Кровь: река жизни. От древних легенд до научных открытий
Шрифт:
Первым шагом в лечении аллергии является точное выяснение, что именно ее вызывает, а иногда это сделать весьма нелегко.
Хотя организм миллионы раз демонстрирует свою способность действовать очень «целесообразно», аллергия является одним из драматических доказательств того, что он способен ошибаться в определении цели действия. И за эти ошибки расплачивается дорогой ценой.
Глава 14
«Твердая» кровь
Кровь уникальна тем, что это жидкая ткань. Это дает ей ряд преимуществ, которые уже обсуждались ранее. Однако у жидкости есть и один большой недостаток. Она может проливаться.
Это
То, что организм в состоянии исправить повреждение, очевидно. Мы постоянно режем, царапаем, ударяем и наносим сотни других повреждений своей коже, в результате чего мелкие сосуды разрываются и начинается кровотечение. Обычно оно не доставляет нам неприятностей. Мы промываем рану, наносим антисептическое средство, чтобы избежать заражения, но совершенно не думаем о потере крови. По опыту мы знаем, что вскоре кровь перестанет течь и свернется, место повреждения покроется корочкой, которая со временем отпадет, и под ней будет новая, неповрежденная кожа.
Что происходит после повреждения сосудов?
Они сначала расширяются, чтобы кровь могла проходить по ним свободнее. Начинается активное кровотечение. Это совсем не так страшно и даже полезно, поскольку кровь вымывает грязь и микроорганизмы, которые могли попасть в ткани через царапину или порез.
Через короткое время сосуды вновь сокращаются, и кровотечение уменьшается. Начинает образовываться сгусток крови.
Примерно через тридцать минут — два часа сосуды снова расширяются, поэтому к поврежденному участку кожи приливает больше крови, и начинается восстановление ткани. (В этом процессе могут участвовать некоторые виды белых клеток крови.) Расширение сосудов не означает, что кровотечение возобновится вновь, поскольку к этому времени сгусток крови перекрывает повреждение в стенке сосуда.
Кровяной сгусток состоит в основном из элементов крови, объединенных сетью белковых волокон. Волокна составляют всего 1 % сгустка, но роль их велика. Не будь белковых волокон, кровь бы текла постоянно.
Белок, из которого состоят волокна, носит название фибрин. Очевидно, что в циркулирующей крови фибрина нет. Если бы он был, красные клетки запутались бы в нем, и кровообращение, а следовательно, жизнь стали бы невозможны. Но в крови должно быть какое-то вещество, которое при контакте с воздухом или при повреждении кровеносного сосуда становится фибрином.
Этим веществом является белок плазмы крови, носящий название фибриноген(«дающий жизнь фибрину»). При электрофорезе фибриноген располагается между гамма-глобулином и бета-глобулином. Физически он отличается от других белков плазмы тем, что его молекула особенно длинная и тонкая. (Большинство молекул белков имеют форму сигары, но фибриноген длиннее и тоньше других.)
С химической точки зрения у фибриногена есть одно важное свойство. При определенных условиях небольшая часть молекулы фибриногена может отделиться. Эта часть, составляющая менее 1 % от целой молекулы, называется фибринопептидом. После отделения фибринопептида атомы выстраиваются таким образом, что соседние молекулы фибриногена прочно соединяются между собой. (Подобное происходит, если снять защитную бумажную полоску с пластыря. Открытая поверхность липкая, а сама бумага — нет.) В результате соединения молекул фибриногена, происходящего почти сразу же после удаления фибринопептида, образуется бесконечно длинная молекула фибрина. Именно эти молекулы составляют каркас кровяного сгустка.
Если у животного или человека взять цельную кровь и оставить ее на какое-то время, она свернется. Фибриноген превратится в фибрин и соединит все форменные элементы крови. Через некоторое время из сгустка выделится жидкость желтого цвета. Это обычная плазма, в которой не хватает только фибриногена. Обычно ее называют сывороткой крови.
С плазмой работать довольно сложно, поскольку фибриноген легко свертывается. Проще удалить фибриноген и работать с сывороткой. По этой причине плазменные белки — альбумин, глобулин и другие — как правило, называют сывороточными белками.
Должен существовать какой-то механизм, который быстро превращает фибриноген в фибрин. Это происходит при помощи фермента. Сам фибриноген может избавляться от фибринопептида и превращаться в фибрин очень медленно. В присутствии фермента переход фибриногена в фибрин ускоряется. Этот фермент носит название тромбина(от греческого слова «сгусток»).
Очевидно, когда сосуд поврежден и начинается кровотечение, появляется тромбин, и фибриноген, который до этого мирно циркулировал в организме, быстро превращается в фибрин.
Я сказал «появляется тромбин», потому что кажется вполне логичным, что до ранения в крови его просто не было. Если бы он там был, то постоянно превращал бы фибриноген в фибрин, что могло привести к смерти. В крови должно быть какое-то вещество, неактивное, которое в нужный момент превращается в активный тромбин. Ученые называют такое вещество неактивным предшественником. (Фибриноген — неактивный предшественник фибрина.)
Неактивным предшественником тромбина в плазме является протромбин.
Получается, что мы сделали еще один шаг назад. Что в критический момент превращает протромбин в тромбин? Одними из необходимых для этого веществ являются ионы кальция. Никакие другие ионы не подходят, поэтому о замене речь не идет. Ионы кальция всегда находятся в плазме и всегда в нужном количестве. Концентрация ионов кальция в крови строго контролируется, потому что снижение ее даже на 10 % будет смертельно. От кальция зависит деятельность мышц, в том числе и сердца.
С другой стороны, одних ионов кальция недостаточно. Нужно что-то еще, и этим «что-то» является белок под названием тромбопластин. Это фермент, ускоряющий удаление фрагмента молекулы протромбина и превращающий его таким образом в тромбин. Другими словами, тромбопластин освобождает активную группу атомов тромбина так же, как тромбин освобождает активную группу атомов фибриногена.
Этот процесс напоминает бесконечное кружение на карусели, поскольку очевидно, что тромбопластин также не может находиться в крови. Если бы это было так, он превращал бы протромбин в тромбин, тромбин превращал фибриноген в фибрин, и тогда жизнь была бы невозможна.
Вместо тромбопластина, в крови и тканях находятся несколько его неактивных предшественников. Некоторые из них необходимы для образования тромбопластина, и все они носят общее название тромбопластиногены.