Кровельные работы
Шрифт:
Цветные металлы и их сплавы, чугуны, нержавеющие хромистые и хромоникелевые стали невозможно разрезать обычной газокислородной резкой. Для этого надо использовать плазменно-дуговую, а лучше кислородно-флюсовую резку. Сущность последней состоит в том, что в зону резания с помощью специальной аппаратуры непрерывно поступает порошкообразный флюс совместно с режущим кислородом. Флюс сгорает и расплавляет образующиеся тугоплавкие оксиды. Кроме того, флюс переводит оксиды в жидкотекучие шлаки, легко вытекающие из места разреза. Данная резка применяется, главным образом, для работы с чугуном и высоколегированными сталями толщиной до 70 мм.
В
Данная резка осуществляется установкой УРХС-5, состоящей из резака и флюсопитателя. Установка может разрезать ручным или машинным способом высоколегированные хромоникелевые и хромистые стали толщиной 10–200 мм при скорости резания 230–760 мм/мин. На 1 м разреза расход кислорода составляет 0,20–2,75 м3, ацетилена – 0,017-0,130 м3и флюса – 0,20–1,3 кг. Чугун толщиной 50 мм режется со скоростью 70–100 мм/мин при расходе на 1 м разреза 2–4 м3кислорода, 0,16–0,25 м3ацетилена и 3,5–6 кг флюса. При резке сплавов меди получают приблизительно такие же параметры.
Следует учитывать, что мощность подогревающего пламени нужно повысить на 15–25 % по сравнению с обычной газовой резкой, так как определенная часть теплоты этого пламени будет уходить на нагревание флюса. Пламя должно быть нормальным или с незначительным избытком ацетилена. От торца мундштука резака до поверхности металла должно быть расстояние в 15–25 мм. При малом расстоянии возможны хлопки и обратные удары пламени из-за отскакивания частиц флюса от поверхности и попадания их в сопло резака. Кроме того, может быть перегрев мундштука и вследствие этого нарушение процесса резки. Угол наклона инструмента следует сделать в 1–10° в сторону, обратную направлению резки. Для облегчения процесса резки сплавы меди нужно предварительно подогревать до 200–50 °C, а хромистые и хромоникелевые стали – до 300–400 °C.
На практике довольно часто производится резка бетона и железобетона. Она выполняется 2 способами: кислородно-копьевой и порошково-копьевой резками.
Кислородно-копьевая резка очень хорошо прожигает отверстия в бетоне. Она позволяет получить отверстия глубиной до 4 м при диаметре до 1,2 м. Этой резкой можно с успехом прижигать отверстия в стальной заготовке.
При данном способе используется стальная труба (копье), один конец которой разогревается до температуры оплавления и приставляется к поверхности бетона. Через копье продувается кислород, который, взаимодействуя с раскаленным торцом трубы, восстанавливается. При этом возникают жидкотекучие оксиды железа, реагирующие с бетоном и превращающиеся в шлаки, которые затем легко выдуваются. Продвигая трубу вперед, можно прожечь требуемое отверстие в бетоне.
В качестве копья можно использовать газовую тонкостенную трубу диаметром 10–20 мм, заполненную стальными прутками на 60–65 % ее объема или обмотанную снаружи стальной проволокой диаметром 3–4 мм, а также цельнотянутую толстостенную трубу диаметром 20–35 мм. Проволока и прутки выполняют при такой резке ту же функцию, что и флюс при кислородно-флюсовой резке. Копье нагревается, как правило, угольным электродом или горелкой.
Порошково-копьевая резка характеризуется тем, что при ней используется железо-алюминиевый порошок в соотношении 85: 25. Как и флюс, этот порошок вдувается струей кислорода в зону резания. Параметры выполняемой работы при этом могут быть следующими. Так, например, при прожигании отверстия диаметром 50 мм и глубиной 500 мм, скорость продвижения составит 120–160 мм/мин при давлении кислорода 0,7 МПа, расходе порошка 30 кг/ч и расходе копья (трубы) 4 мм на каждый метр длины отверстия.
При глубине отверстия 1,5 м и том же диаметре скорость углубления уменьшится до 40–70 мм/мин при давлении кислорода 1,0–1,2 МПа, расходе флюса 30 кг/ч и расходе копья 6 мм на 1 м длины отверстия.
Поверхностная резка – разновидность кислородной резки. Она предназначена для вырезания на поверхности металла рельефа в виде одной или нескольких, раздельных или совмещенных канавок. В сварочных работах эта резка часто используется для вырезки дефектных участков швов. При данной резке источником нагрева металла будет являться и пламя резака, и расплавленный шлак, который при своем растекании подогревает глубоколежащие слои металла.
Для этого вида работ хорошо подходят резаки типа РПА и РПК. Режим резки и угол наклона инструмента играют важную роль в эффективности поверхностной резки.
На начальном этапе нужно прогреть область разреза до температуры воспламенения. Резак следует располагать при этом под углом 70–80° к поверхности металла. Перед подачей режущего кислорода инструменту необходимо придать наклонное положение под углом 15–45°. В процессе резки возникает очаговое горение металла; тем самым обеспечивается эффективная зачистка металлической поверхности, в том числе и за счет равномерного продвижения инструмента по линии намечаемого разреза.
Положение резака при данном виде резки детально показано на рисунке 134.
Рис. 134. Схема поверхностной кислородной резки: 1 – мундштук; 2 – шлак; 3 – канавка.
Ширина и глубина канавки уменьшаются при увеличении скорости резки. Кроме того, глубина канавки становится меньше, когда уменьшается угол наклона мундштука инструмента и при падении давления режущего кислорода. Ширина канавки зависит от диаметра струи кислорода. Во время поверхностной резки нужно сделать ширину канавки в 5–6 раз больше ее глубины, чтобы предупредить возникновение закатов на поверхности.
Если необходимо зачистить многочисленные дефекты на большой площади, то в этом случае следует произвести резку «елочкой» за один или несколько проходов с использованием колебательных движений резака.
Особенности воздушно-дуговой резки
Воздушно-дуговая резка является одной из разновидностей разделительной резки и основана на выплавлении металла из участка резания теплотой электрической дуги, возбуждаемой между разрезаемым металлом и электродом. При этом струя сжатого воздуха непрерывно удаляет расплавленный металл из полости разреза.