Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Шрифт:
Путь к этой теории разные физики видели по-разному. Эйнштейн в 1923 году считал, что этот путь следует прокладывать через его теорию гравитации. И выбрал направление пути — объединенное описание гравитации и электричества, надеясь, что такая теория объяснит и элементарные заряды, и кванты.
Бор эту надежду не разделял, но вполне разделял взгляд Эйнштейна на квантовую проблему как самую глубокую в тогдашней физике. А гвоздь проблемы он видел в гипотезе Эйнштейна о световых квантах, которая, «несмотря на ее эвристическую ценность, несовместима с явлениями интерференции и неспособна прояснить природу излучения».
За решение квантовой проблемы Бор готов был заплатить высокую цену. В нобелевской речи
Фундаментальным физикам-теоретикам — таким как Планк, Эйнштейн и Бор — труднее было, чем химику Аррениусу, мириться с отсутствием целостной квантовой теории. И вовсе не удивительно, что в 1922 году все три великих основоположника квантовой физики ошибались, предсказывая путь ее развития. Хотя науке присуща способность предсказывать исход опыта, истории науки столь же присуща непредсказуемость. Гравитация ничем не помогла квантовой теории, а идея квантов света, или фотонов, осталась ключевой навсегда или по меньшей мере на столетие, до наших дней. Непредсказуемой была идея, к которой год спустя пришел Луи де Бройль, заподозрив волновые свойства у электрона, самой что ни на есть, как тогда считалось, частицы. Волновые свойства оказались присущи любой частице: длина волны де Бройля равна h/mV, где m — масса частицы, V — ее скорость, h — постоянная Планка.
Два края пропасти между понятиями квантовой частицы и волнового поля оказались двумя коренными свойствами физической реальности. И надо было не строить мост через пропасть, а научиться летать мыслью над пропастью так, чтобы видеть оба ее края и уметь приземляться по обеим сторонам. Такой летательный аппарат дала квантовая механика, созданная во второй половине 1920-х годов трудами прежде всего физиков молодого поколения и сразу показавшая свою плодотворность.
Теорию эту основоположники восприняли по-разному.
Планк, которому уже было под семьдесят, — с грустью. Вместо того чтобы прояснить его же парадоксальные идеи, квантовая механика добавила новые. Тихо страдая, он сформулировал грустный закон истории:
Новые идеи входят в науку не потому, что их противники признают свою неправоту; просто противники эти постепенно вымирают, а подрастающее поколение усваивает новые понятия с самого начала.
Представители «вымирающего поколения», такие как Планк, молча переживают внутреннюю драму, мучаясь тем, что их научные идеалы обнаружили свою ограниченность. Другие, критически анализируя новую физику, проясняют ее. Так вел себя Эйнштейн. Он понимал, что квантовая механика успешно работает, но считал ее лишь промежуточным этапом, отказываясь признать ее полной теорией. При этом главное неприятие вызывала идея, которую он сам, по существу, впервые ввел в физику, — фундаментальная роль вероятности.
Новая вероятность
Новая вероятность принципиально отличалась от той, которую Максвелл положил в основу статистической физики, а Эйнштейн применил в задаче броуновского движения. Там речь шла об учете огромного числа факторов — например, толчков множества молекул. В подобных задачах нет практической возможности, да и надобности, следить за деталями движений всех молекул. Однако теоретически можно было думать, что каждая молекула движется неким определенным образом под воздействием толчков других молекул и соударений о стенки сосуда. Начиная с открытия радиоактивности, так думать уже не получалось. Радиоактивное ядро распадалось с некоторой вполне определенной вероятностью, казалось, независимо от окружения, и это не было результатом множества каких-то случайностей.
Устройство ядра, впрочем, еще долго оставалось непроницаемым, но уже поведение атомных электронов намекало на какую-то новую вероятность — вероятность перескока электрона с одной орбиты на другую. Ведь электрон мог перескочить с высокой орбиты на любую из нижних. Каждому перескоку соответствовала своя частота излучения, то есть положение спектральной линии, и это положение давалось моделью Бора. Но спектральная линия характеризуется еще и яркостью, которая как-то соответствует «охотности» данного перескока. Именно яркостью Эйнштейн занимался в 1916 году, когда ввел два типа излучения — спонтанное и вынужденное. Спонтанный перескок происходит сам собой, независимо ни от чего, и определяется некой величиной вероятности. А вынужденный перескок происходит под воздействием излучения той же частоты и пропорционален его интенсивности. Эйнштейн получил связь между интенсивностями этих излучений, начав фактически путь к теории лазеров, но для нас сейчас — и для создания квантовой теории в 1920-е годы — особенно важно само понятие спонтанного излучения, характеризуемого некой «первичной», фундаментальной вероятностью, а не результатом множества каких-то нано-микро-случайностей.
Такая вероятность стала ключевой особенностью квантовой механики и… неприемлемым понятием для самого Эйнштейна, как и для Планка. Они не верили, что подлинная теория может основываться на понятии вероятности. Почему, сказать трудно. Планковский закон истории науки дает ответ, но применять его к Планку и Эйнштейну, выдвинувшим прорывные квантовые идеи, особенно трудно.
Эйнштейн 20-х годов сильно отличался от Эйнштейна 1916 года. Избрав направлением поиска обобщение своей теории гравитации, он не видел там места для вероятности. А объясняя свою позицию, говорил об идеале причинности, который, по его мнению, должен был воплотиться в «полной» теории. Своему близкому другу он писал в 1926 году:
Квантовая механика внушает большое уважение. Но внутренний голос говорит мне, что все же это НЕ ТО… Эта теория многое дает, но к тайне Создателя она едва ли нас приближает. Во всяком случае, я убежден, что Он не играет в кости.
Такие доводы не убеждали Бора, который всей душой принял вероятностную основу квантовой механики и принял участие в ее осмыслении. Он признавал значение критики Эйнштейна для прояснения фундаментальных особенностей квантовой механики, но считал эти особенности необратимым изменением фундамента физики. А на довод Эйнштейна о Боге, не играющим в азартные игры, отвечал, что «уже мыслители древности указывали на необходимость величайшей осторожности в присвоении Провидению свойств, выраженных на языке повседневной жизни».
Это не только остроумный ответ в тон Эйнштейну, а еще и напоминание о том, что явления классической физики гораздо ближе к повседневной жизни, чем явления атомных масштабов. Соответственно, понятия и научные идеалы квантовой физики могут кардинально отличаться от привычных. Тут стоит вспомнить слова Галилея о Природе, которая «вовсе не заботится о том, доступны ли человеческому восприятию ее скрытые причины и способы действия», и о Боге, который «наделил нас органами чувств, языком и разумом, чтобы с их помощью мы сами могли получить знания об устройстве Природы».