Чтение онлайн

на главную

Жанры

Куда течет река времени
Шрифт:

Миры находятся в вечном кружении

От сотворения до распада,

Подобно пузырям на поверхности реки,

Всплывая, взрываясь и уносясь прочь.

П. Шелли

В одной из таких вселенных мы и находимся.

Можно сказать, что происходит вечное рождение Вселенной из флуктуаций (или, если угодно, рождение многих вселенных), вечное воспроизводство Вселенной самой себя. У такого мира в целом нет начала и не будет конца. Он вечен и юн одновременно. Это — картина взрывающейся Вечности.

При рождении новых мини-вселенных из вакуумной пены происходят,

вероятно, изменения или, как говорят, флуктуации всех физических параметров, включая изменение размерности пространства и времени и флуктуации самих физических законов.

Итак, возможно, природа «пыталась» несчетное число раз создавать вселенные с самыми разными свойствами. Мы живем в «наиболее удачном» (для нас) экземпляре этого вечного «творения». В нашей Вселенной физические условия оказались наиболее подходящими для возникновения жизни.

Как показывает анализ, возникновение сложных структур, а тем более жизни, во вселенных, где пространство имеет два или, допустим, четыре измерения, невозможно.

Рассмотрим этот важный вопрос подробнее. Почему у нашей Вселенной пространство имеет именно три измерения — длину, ширину и высоту, а не, скажем, два или пять измерений? То, что здесь кроется какая-то загадка, физики осознали достаточно давно. Еще известный австрийский физик Э. Мах прямо поставил вопрос: «Почему пространство трехмерно?» Серьезный анализ проблемы был начат физиком, уроженцем Вены П. Эренфестом.

Чтобы попытаться осознать суть этой проблемы, можно постараться представить, что было бы, если бы пространство имело число измерений, отличное от трех. Посмотрим, что при этом произойдет с простейшими взаимодействиями.

Одним из самых простых примеров физических взаимодействий является закон Кулона для покоящихся зарядов и закон Ньютона для тяготеющих масс. В обоих случаях сила взаимодействия ослабевает обратно пропорционально квадрату расстояния. Но еще немецкий философ И. Кант понял, что закон обратных квадратов есть следствие трехмерности нашего пространства. В самом деле, почему сила, например, электростатического взаимодействия ослабевает с расстоянием? Наиболее наглядный ответ заключается в том, что с ростом расстояния силовые линии поля распределяются на все большей поверхности сферы, охватывающей заряд и имеющей радиус, равный расстоянию, разделяющему заряд и пробную частицу. Площадь сферы растет как квадрат радиуса, значит, плотность силовых линий, пронизывающих эту сферу, уменьшается обратно пропорционально квадрату радиуса, что и определяет закон изменения силы.

Но сказанное справедливо только в трехмерном пространстве. Если пространство четырехмерно, то площадь трехмерной сферы (геометрического места точек, равноудаленных от центра в четырехмерном пространстве) пропорциональна уже кубу радиуса, для пространства пяти измерений эта площадь пропорциональна радиусу в четвертой степени, и так далее. Отсюда получается и закон изменения электростатической и гравитационной силы в многомерном пространстве. Почему так важно изменение закона падения силы в пространстве с разной размерностью?

Рассмотрим движение пробного заряда на круговой орбите вокруг центрального заряженного тела (с зарядом противоположного знака, чтобы было притяжение) в пространстве любого числа измерений. Пусть задан момент количества движения заряда (он не может меняться при движении, излучением волн мы пренебрегаем). Тогда — центробежные силы всегда будут обратно пропорциональны кубу расстояния и не зависят от числа измерений пространства. Из механики известно, что для существования устойчивых круговых орбит необходимо, чтобы центробежные силы уменьшались с расстоянием быстрее, чем сила притяжения. Иначе движение по кругу будет неустойчивым и малейшее возмущение приведет либо к падению заряда к центру, либо к удалению его в бесконечность. А отсутствие устойчивых круговых орбит означает отсутствие вообще связанных состояний, когда заряд движется в ограниченной области пространства вокруг центрального тела. Из сказанного

следует, что для существования связанных состояний необходимо, чтобы размерность пространства была не более трех. Такое заключение было получено впоследствии и в квантовой механике А. Гуревичем и В. Мостапаненко, а также Ф. Татерлини.

Естественно, все сказанное о зарядах справедливо и для движений под действием тяготения, так как закон Ньютона похож на закон Кулона.

Полученный выше вывод представляется неожиданным. На первый взгляд кажется, что с увеличением числа измерений пространства открываются новые возможности для усложнения движений в нем тел, а значит, и для существования более сложных структурных образований. На деле же оказывается, что в таких пространствах нет связанных устойчивых систем тел, взаимодействующих электрическими и гравитационными силами, то есть в них не может быть ни атомов, ни планетных систем, ни галактик!

С другой стороны, если бы пространство было двухмерным или даже одномерным, то в таких пространствах взаимодействующие заряды противоположных знаков никогда не могли бы улететь на сколь угодно большие расстояния. Здесь силы падают с расстоянием слишком медленно, и какую бы начальную скорость ни придать заряду, центральное тело своей силой притяжения остановит улетающий заряд и заставит его двигаться к себе. В таких пространствах не существовало бы свободного движения притягивающихся тел.

И только в трехмерном пространстве возможны и связанные и свободные состояния, тела могут кружить друг около друга, а при большой скорости могут разлететься.

После всего сказанного, наверное, не столь странно выглядит утверждение, что если природе пришлось много раз пробовать «создавать» вселенные с разным числом измерений пространства, то только при трехмерном возникали бы возможности для существования и связанных гравитирующих систем, и свободных тел, для существования связанных и свободных состояний движения электронов в атомах. Значит, только в этом случае возможно возникновение очень сложных и разнообразных структур, обладающих возможностью возникать и распадаться. Только здесь есть возможность изменчивости, эволюции, возникновения жизни, а следовательно, именно в таких пространствах (и, вероятно, только в них!) могут существовать разумные существа. Поэтому нечего удивляться, что мы живем именно в трехмерном пространстве.

В пространствах с другим числом измерений жизнь не могла возникнуть. То же можно сказать о мирах с другими физическими законами. Жизнь там также не могла бы возникнуть. Более того, во вселенных с хотя бы слегка другими массами элементарных частиц не было бы обычного вещества.

Откуда такое заключение? Для примера рассмотрим простейший атом водорода. Он может существовать неограниченно долго, если его не подвергать внешним воздействиям. Электрон и протон в нейтральном атоме не вступает в реакцию с образованием нейтрона и нейтрино, несмотря на то, что есть отличная от нуля вероятность для электрона находиться в месте расположения протона. Однако подобная реакция происходит при столкновении электронов с большой энергией с протонами. Невозможность реакции в нейтральном атоме обусловлена недостатком энергии. Сумма масс протона и электрона меньше, чем масса нейтрона. Недостаток составляет около тысячной доли массы нейтрона. Если вообразить, что масса нейтрона уменьшится всего на одну тысячную от своей величины, то реакция образования нейтрона станет возможной. Протон бы достаточно быстро захватывал электрон, и атом водорода перестал бы существовать. То же произошло бы при аналогичном утяжелении протона. Изменение массы этих частиц примерно на 0,1 процента их величины привело бы к катастрофическим последствиям — к отсутствию водорода в сегодняшней Вселенной. Но это означало бы отсутствие главного ядерного топлива для звезд. При ничтожной вариации массы элементарных частиц во Вселенной не было бы звезд типа нашего Солнца, не было бы химических соединений, содержащих водород, и жизнь в такой Вселенной, по-видимому, была бы невозможной.

Поделиться:
Популярные книги

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Ливонская партия

Ланцов Михаил Алексеевич
3. Иван Московский
Фантастика:
альтернативная история
5.00
рейтинг книги
Ливонская партия

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4