Чтение онлайн

на главную

Жанры

Куда течет река времени
Шрифт:

Если во Вселенной нет заметных количеств материи между галактиками, которая почему-либо не видна, то она всегда будет расширяться. Однако, как было уже сказано, есть основания считать, что наблюдаемые нами галактики еще далеко не все, что имеется во Вселенной. Более того, невидимая масса, вероятно, составляет основную ее часть.

Таким образом, весьма возможно, что непосредственно наблюдаемые в телескопы великолепные узоры гигантских галактических миров — это лишь жалкая малая видимая часть истинной невидимой структуры мира. Как возникли подозрения о существовании «скрытой массы»?

Важнейшие наблюдательные данные об этом сводятся к следующему. Астрономы изучают движения спутников отдельных галактик (ими являются

маленькие галактики), или движения газовых облаков. Эти объекты часто движутся на расстояниях далеко за видимой границей галактики (очерченной совокупностью светящихся звезд), где, казалось бы, никакой материи в заметных количествах уже нет. Тем не менее, вычисленная по этим наблюдениям масса той или иной галактики, вокруг которой наблюдались такие движения, оказывалась иногда раз в десять больше, чем определенная по движению звезд на видимой границе галактики. Это значит, что вокруг видимого тела галактики имеется какая-то невидимая «корона», содержащая огромные массы. Тяготение этих масс никак не сказывается на движении звезд глубоко внутри короны на краю видимой галактики, но эти массы влияют своим тяготением на движение тел на окраинах короны и вне ее.

Еще большие «скрытые массы» имеются в межгалактическом пространстве в скоплениях галактик. В таких скоплениях галактики движутся хаотически. Поэтому астрофизики сначала измеряют скорости отдельных галактик, затем вычисляют полную массу скопления, создающую общее поле тяготения, которое разгоняет движущиеся в нем галактики. Чем больше наблюдаемые скорости, тем больше должна быть масса. Разумеется, эта масса включает все вещество — и видимое, и невидимое. И вот оказывается, что иногда полная масса во многие десятки раз превышает суммарную светящуюся массу всех галактик в скоплении.

Ясно, что существование «скрытой массы» кардинально меняет нашу оценку общей усредненной плотности всех масс Вселенной. Если учет только видимого вещества давал три процента от критической плотности, то учет скрытой массы в скоплениях повышает это отношение до 50 процентов. Возможно, что есть «скрытая масса» и между скоплениями галактик. Ее обнаружить особенно трудно. Но если это так, то не исключено, что полная средняя плотность равна критической плотности или даже несколько больше ее.

Таким образом, пока нельзя сказать, больше ли истинная плотность всех видов вещества во Вселенной, чем критическая, или нет. Значит, мы пока не можем сказать определенно, будет ли Вселенная расширяться неограниченно долго или же в будущем она начнет сжиматься. Но если когда-нибудь расширение и сменится сжатием, то очень не скоро — не раньше многих десятков миллиардов лет.

Что представляет собой скрытая масса? Надо прямо сказать, что физическая природа ее пока не ясна. Частично она может быть обусловлена огромным числом слабо светящихся и поэтому практически невидимых издали звезд или других несветящихся небесных тел.

Однако вероятнее, что скрытая масса является своеобразным реликтом тех физических процессов, которые протекали в первые мгновения расширения Вселенной. Скрытая масса, возможно, является совокупностью большого числа элементарных частиц, обладающих массой и слабовзаимодействующих с обычным веществом. Теория предсказывает существование таких частиц. Ими могут быть, например, нейтрино, если они обладают массой покоя, о чем пока мы не знаем.

Что произойдет во Вселенной в будущем? Ответ зависит от того, будет ли неограниченно происходить расширение Вселенной. Предположим, что плотность материи во Вселенной не превосходит критическую, расширение продолжается вечно, и посмотрим, что тогда произойдет.

Конечно, в отдаленном будущем Вселенная изменится качественно. Она совсем не будет походить на сегодняшнюю Вселенную точно так же, как эта последняя совсем не похожа на Вселенную первых мгновений после ее зарождения.

В будущей Вселенной звезды

погаснут. Источником энергии, поддерживающим их свечение, являются ядерные процессы в их недрах. Но так как запасы ядерной энергии в звездах ограничены, то рано или поздно они исчерпаются. Известно, что полная продолжительность жизни нашего Солнца исчисляется 10 миллиардами лет. Более массивные звезды живут еще интенсивнее, быстрее и в конце своей эволюции взрываются. Часть их превращается после смерти в черные дыры, другие становятся очень плотными белыми карликами или сверхплотными нейтронными звездами. Плотные звезды будут остывать и превратятся со временем в совсем холодные небесные тела.

В современной Вселенной из разреженного газа рождаются новые звезды, но запасы газа также рано или поздно исчерпаются, и в будущем процесс образования звезд прекратится. Знакомый нам космолог Дж. Леметр писал: «Эволюцию мира можно сравнить со зрелищем фейерверка, который мы застали в момент, когда он уже кончается: несколько красных угольков, пепел и дым. Стоя на остывшем пепле, мы видим медленно угасающие солнца и пытаемся воскресить исчезнувшее великолепие начала миров».

Примерно через сто тысяч миллиардов лет погаснут самые последние звезды.

Что будет в совсем отдаленном будущем с холодными плотными небесными телами — остатками погасших звезд — и с крайне разреженным газом между ними?

Для их судьбы определяющим является медленный процесс распада вещества Вселенной, предсказываемый современной физикой. Оказывается, все вещество, из которого состоят звезды, планеты и мы с вами, не вечно, и в отдаленном будущем оно исчезнет. Рассмотрим, как это произойдет.

Мы хорошо знаем о возможности взаимного превращения элементарных частиц. Так, например, протон, сталкиваясь с электроном большой энергии, может превратиться в нейтрон с испусканием нейтрино. Свободный нейтрон распадается, превращаясь в протон с испусканием электрона и антинейтрино. Частицы здесь превращаются друг в друга, и рождаются новые частицы.

Но во всех этих и других реакциях, в которых участвуют частицы, состоящие из кварков, сохраняется барионное число. При превращении, например, протона в нейтрон u-кварк превращается в d-кварк. В реакции распада нейтрона происходит обратное изменение. Сами кварки при этом никуда не деваются, барионное число сохраняется. Таким образом, во всех известных до сих пор реакциях выполняется закон сохранения барионного числа.

Этот закон обеспечивает стабильность вещества Вселенной. Из-за закона сохранения барионного числа протон не распадается на более легкие частицы, например, на позитрон и световые кванты. Но тут читатель может задать вопрос: «Почему, собственно, протон должен вообще иметь тенденцию распадаться на более легкие частицы? Если протон состоит из каких-то частей (кварков), накрепко связанных цветовыми силами в единую систему, то с чего вдруг могут возникнуть какие-то причины его распада?»

Дело в том, что тенденция к распаду частиц на более легкие с выделением энергии отражает всеобщий закон природы: система стремится прийти в состояние с минимумом энергии, выделив при этом избыток имеющейся энергии.

Иллюстрацией этого закона могут служить следующие простые примеры. Пусть мы сжали пружину (сообщили ей энергию) и закрепили ее защелкой. Пружина стремится распрямиться, выделить сообщенную ей при сжатии энергию, прийти в состояние с минимумом энергии. Если защелку открыть или если она ненадежная и сама случайно «сработает», то так и произойдет. Другой пример. Тяжелый камень находится в небольшой впадине на вершине холма. Если его подтолкнуть, сообщив ему сравнительно небольшую энергию, способную поднять его на край впадины, то дальше он уже сам скатится вниз по внешнему склону холма, выделив в конце пути куда большую энергию, чем получил при первоначальном толчке, и придет в состояние с минимумом энергии у подножия холма.

Поделиться:
Популярные книги

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Смерть может танцевать 2

Вальтер Макс
2. Безликий
Фантастика:
героическая фантастика
альтернативная история
6.14
рейтинг книги
Смерть может танцевать 2

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Провалившийся в прошлое

Абердин Александр М.
1. Прогрессор каменного века
Приключения:
исторические приключения
7.42
рейтинг книги
Провалившийся в прошлое

Последняя жертва

Мид Райчел
6. Академия вампиров
Фантастика:
ужасы и мистика
9.51
рейтинг книги
Последняя жертва

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Книга 5. Империя на марше

Тамбовский Сергей
5. Империя у края
Фантастика:
альтернативная история
5.00
рейтинг книги
Книга 5. Империя на марше

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI