Куда течет река времени
Шрифт:
Это открытие Г. Галилея — открытие того, что все происходит совершенно одинаково независимо от равномерного движения «лаборатории», в которой проводятся наблюдения, — и явилось научным аргументом против утверждения сторонников неподвижности Земли во Вселенной. Следуя Н. Копернику, Г. Галилей утверждал: «Положим в основу нашего познания то, что, каково бы ни было движение Земли, для нас, обитателей ее, оно незаметно, пока мы судим о нем по земным вещам».
Г. Галилей был страстным пропагандистом учения Коперника, в истинность которого он непоколебимо верил. Открытия в физике и астрономии сделали его самым знаменитым ученым в Европе. Поначалу католическая церковь старалась осторожными увещеваниями склонить его на ту точку зрения, что учение Коперника только удобная для вычисления гипотеза (как утверждал Оспандер в предисловии
Как замечает советский физик В. Гинзбург, милостивое разрешение «спасать» явления и заниматься математикой, но не касаться реальности, существа дела, вызывало бешенство у Г. Галилея. В послании герцогине Лотарингской он пишет: «Профессора-богословы не должны присваивать себе права регулировать своими декретами такие профессии, которые не подлежат их ведению, ибо нельзя навязывать естествоиспытателю мнения о явлениях природы… Мы проповедуем новое учение не для того, чтобы посеять смуту в умах, а для того, чтобы их просветить; не для того, чтобы разрушить науку, а чтобы ее прочно обосновать. Наши же противники называют ложным и еретическим все то, чего они не могут опровергнуть. Эти ханжи делают себе щит из лицемерного религиозного рвения и унижают Священное писание, пользуясь им как орудием для достижения своих личных целей… Предписывать самим профессорам астрономии, чтобы они своими силами искали защиты против их собственных наблюдений и выводов, как если бы все это были один обман и софистика, означало бы предъявлять к ним требования более чем невыполнимые; это было бы все равно, что приказывать им не видеть того, что они видят, не понимать того, что им понятно, и из их исследований выводить как раз обратное тому, что для них очевидно». «Замечательные слова, звучащие вполне современно», — добавляет В. Гинзбург.
Нам остается подчеркнуть, что далеко не всякое движение «лаборатории» незаметно для находящихся в ней людей и предметов. Так, если резко трогается автомобиль или он круто поворачивает на вираже, то мы явственно это ощущаем. Необнаружимы только равномерные и прямолинейные движения. Такие движения «лабораторий» или тел, которые происходят по инерции без действия каких-либо сил, или же когда все силы и «толкающие», и «тормозящие» или отклоняющие от прямолинейного движения точно уравновешивают друг друга, такие движения называют инерциальными, а «лаборатории» — инерциальными «лабораториями».
Конечно, в природе инерциальные «лаборатории» могут осуществляться только с той или иной степенью приближенности. Корабль, подверженный легкой качке волн, очевидно, не «идеальная инерциальная лаборатория». Покачивание корабля можно обнаружить. Но чем меньше всякого рода ускорения или чем плавнее повороты, тем ближе свойства такой «лаборатории» к инерциальным. Сама поверхность Земли тоже «инерциальная лаборатория» только приближенно. Мы знаем, например, что она участвует в круговом движении вокруг оси вращения.
Специально поставленные опыты могут это обнаружить. Читатель, возможно, видел или, по крайней мере, читал о маятнике Фуко. Большой маятник в виде груза на длинном подвесе в высоком помещении, колеблясь, стремится сохранить плоскость своего колебания неизменной по отношению к звездам. Поверхность Земли вместе со зданиями поворачивается в суточном вращении, и мы видим, что направление колебания маятника меняется по отношению
Но вернемся в XVII век. Истинное знание прокладывало себе дорогу в страстной схватке с укоренившимися догмами, с глубокими объективными трудностями, которые всегда воздвигает Природа перед человеческим познанием, и, наконец, с социальными сплетениями жизненных интересов многих людей.
Уже после знаменитого судебного процесса, сделавшего Г. Галилея в 1633 году «узником инквизиции», он издал книгу «Беседы и математические доказательства, касающиеся двух новых наук…». В этой книге, излагающей основы динамики, он писал: «Настоящим сочинением мы лишь открываем двери к этим двум новым наукам, изобилующим приложениями, которые в будущем будут неизмеримо больше приумножены пытливыми умами… одна из наук касается предмета вечного, имеющего первенствующее значение в природе».
Через год после смерти Г. Галилея родился гениальный ученый Исаак Ньютон (1642–1727). Своими трудами он завершил создание классической физики и первой физической уже в нашем понимании теории времени.
В отличие от биографий ученых древности жизнь И. Ньютона известна довольно хорошо. На первый взгляд она внешне удивительно бедна событиями. Начиная рассказ об И. Ньютоне, Б. Кузнецов замечает: «Не было семьи, не было путешествий, не было каких-либо крупных перемен в жизни, почти не было друзей, почти не было широкой общественной деятельности. Такая жизнь на первый взгляд контрастирует с невероятной насыщенностью творческого пути мыслителя, с подлинными трагедиями познания. Но в действительности между тем и другим имеется глубокое соответствие».
И. Ньютон родился в деревне Вулсторп, недалеко от восточного побережья Англии, в семье фермера. Отец его умер еще до рождения сына. Мальчик учился в королевской школе в маленьком городке Грантем, вблизи которого находилась деревня Вулсторп, а в 1661 году в возрасте девятнадцати лет поступил в Кембриджский университет. Уже в этом возрасте Исаака отличала педантичность, стремление к систематизации и порядку. Он начинал как бедный студент Тринити-колледжа Кембриджского университета — одного из самых знаменитых в Англии. И. Ньютон закончил университет через три года и быстро превратился в мыслителя с гениальными идеями. В 1669 году он занял должность «люкасовского профессора». Эта кафедра, основанная на пожертвования Генри Люкаса в 1663 году, и до сих пор остается одной из самых знаменитых физических кафедр в мире.
Основные физические идеи, положившие начало новому развитию этой науки, были сформулированы И. Ньютоном в очень короткий период, в 1665–1667 годах, во время его пребывания в родной деревне Вулсторп, хотя опубликованы они были гораздо позднее.
В 1665–1667 годах в Англии свирепствовала страшная эпидемия чумы. И. Ньютон уезжает из Кембриджа, где он только что стал бакалавром, в деревню и проводит там около полутора лет. Здесь он непрерывно работает над шлифовкой стекол, созданием приборов, ставит химические опыты. И в это же время напряженно размышляет над основными проблемами физики, астрономии. математики. Результаты этой работы поистине фантастические и могут быть названы озарением. В деревне он приходит к формулировке основ физики, создает теорию тяготения, согласно которой тяжесть, заставляющая тела падать на Землю, тождественна силе, которая удерживает небесные тела на их орбитах, и эта сила ослабевает обратно пропорционально квадрату расстояния.
Уже на склоне лет он рассказывал, как в вулсторпском саду обратил внимание на падение яблока с дерева на Землю и задумался над тем, почему падает яблоко. Ответ, казалось, был давно известен людям: падать его заставляет тяжесть. Но что это такое? И пришел к выводу, что тяжесть означает притяжение яблока Землей. Эта же сила должна распространяться дальше от поверхности Земли, захватывать Луну, удерживая ее на орбите, не позволяя, двигаясь по инерции, улететь в космическое пространство.
Полвека спустя, в 1714 году, И. Ньютон так вспоминал об этом периоде своей работы: «И в том же году, 1665-м или 1666-м, я начал думать о тяготении, простирающемся до орбиты Луны… Все это было в 1665 и 1666 годах — в годы чумы, ибо я в те дни был на заре своей поры изобретения, и математика и философия волновали меня более, чем когда-либо после».