Курьёзы и юмор с физико-математическим уклоном
Шрифт:
АРАБСКИЕ ЦИФРЫ придумали не арабы. Арабы лишь переняли эту форму записи чисел из Индии [29, стр. 42]
БИНОМ НЬЮТОНА. Частные случаи этой знаменитой формулы были известны задолго до Ньютона в Древнем Востоке. Вероятно также, что Омар Хайям вывел ее для натурального показателя[5]. [1, стр. 14] [32, стр. 35]
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ НЬЮТОНА-ЛЕЙБНИЦА. Ферма уяснил и применил ведущую идею этого исчисления на 13 лет раньше рождения Ньютона и на 17 лет ранее рождения Лейбница[6][7]. [3, стр. 56]
КРИВАЯ ВИВИАНИ. Название объясняется
КРИВАЯ ЖОРДАНА. Необходимость доказать то, что замкнутая кривая делит плоскость на две части, отметил К.Нейман. Подобие идей Жордана можно усмотреть в «Лекциях» Вейерштрасса и его статье 1884 года[8]. [1, стр. 64]
ПРАВИЛО ЛОПИТАЛЯ. Под впечатлением от лекций И.Бернулли Лопиталь написал курс «Анализ бесконечно малых для изучения кривых линий». Этот курс содержал и «правило Лопиталя», принадлежавшее, конечно, И.Бернулли[9][10]. [1, стр. 103]
ПРИНЦИП ДИРИХЛЕ. Аналогичные методы доказательства встречались уже у Гаусса и В.Томсона, но Риман узнал об этом методе на лекциях Дирихле и назвал его так, не заботясь об исторической истине. [1, стр. 106]
РЕЗОЛЬВЕНТА ГАЛУА. Абель впервые ввел выражение, называемое теперь «резольвентой Галуа». И сам Галуа приписывал идею резольвенты Абелю. Название введено Бетти, который был первым комментатором знаменитой статьи Галуа. [1, стр. 119]
РЯД МАКЛОРЕНА встречается впервые у Стирлинга, а затем опубликован Маклореном с указанием, что это частный случай разложения Тейлора. [1, стр. 122]
РЯДЫ ФУРЬЕ. Название «ряды Фурье», предложенное Риманом, стало общепринятым как знак признания трудов великого математика, хотя «ряды Фурье» и были довольно хорошо известны ко времени Фурье. [1, стр. 124]
СУММЫ ДАРБУ. В 1875 г. несколько математиков в Англии, Франции, Германии и Италии приходят к одинаковой новой формулировке условия интегрируемости функции. Дарбу, Томе, Смит, Асколи и Дюбуа Раймон с разной степенью подробности и точности ввели верхние и нижние интегральные суммы (а также верхний и нижний интегралы). Термин «суммы Дарбу» ввел, по-видимому, Жордан[11]. [1, стр. 134–135]
ТЕОРЕМА ПИФАГОРА была опубликована за две тысячи лет до него в Вавилоне, клинописью, а пифагоровы числа следовало бы называть вавилонскими числами — вавилоняне знали их раньше греков. [2, стр. 9] [5, стр. 76] [12, стр. 246] Некоторые историки также полагают, что теорема Пифагора принадлежит не легендарному Пифагору, а другому человеку с тем же именем. [14, стр. 124]
ТЕОРЕМА РОЛЛЯ также Роллю не принадлежит — Ролль, современник Ньютона и Лейбница, считал дифференциальное исчисление логически противоречивым и поэтому понятно, не мог высказать «теорему Ролля». [39, стр. 232]
ТРЕУГОЛЬНИК ПАСКАЛЯ, позволяющий находить биномиальные коэффициенты, был известен еще до Паскаля — он обычно называется так ввиду искусного его применения Паскалем к вычислению вероятностей (1653). Таблица биномиальных коэффициентов встречается значительно раньше, например в трактате китайского математика Чжу Ши-чжи (1303). [3, стр. 79] [5, стр. 125] [39, стр. 47]
ФОРМУЛА ГЕРОНА. Архимед еще до Герона знал формулу, по которой вычисляется площадь треугольника по трем сторонам. [32, стр. 23]
ФОРМУЛА МУАВРА (cos ? + i sin ?)n = cos n? + i sin ?? в явном виде впервые встречается у Эйлера (1748). [39, стр. 61]
ФОРМУЛА ЭЙЛЕРА. Соотношение eix = cos x + i sin x (в виде xi = loge(cos x + i sin x)) было опубликовано в посмертной работе Коутса на 20 лет раньше Эйлера. Эйлер сначала сообщил эту формулу И.Бернулли, затем опубликовал. Первое время он рассматривал свое открытие как парадокс. [1, стр. 151]
ФУНКЦИИ БЕССЕЛЯ. Функции нулевого порядка встречались в статьях Д.Бернулли, который установил многие их свойства. Бесселевы функции с любым целым индексом введены впервые Эйлером. Наконец, такие функции есть у Лагранжа. Бессель ввел этот класс трансцендентных функций в статье 1824 года. Название «функции Бесселя» дал Шлемильх, который сделал первую попытку построения более или менее самостоятельной теории бесселевых функций. [1, стр. 151–152]
ФУНКЦИЯ ВЕЙЕРШТРАССА. В 1930 г. была опубликована найденная рукопись Больцано, написанная примерно в 1830 г. Оказалось, что уже в это время Больцано построил пример непрерывной функции, не являющейся монотонной в любом интервале области определения и не дифференцируемой на всюду плотном множестве точек. Доказательства Больцано не строги по современным требованиям, но своих современников он обогнал на несколько десятилетий.
Вейерштрасс сообщал, что Риман приводил в своих курсах пример функции, непрерывной, но не дифференцируемой. При этом
Вейерштрассу не было известно, утверждал ли Риман, что функция не дифференцируема ни в одной точке или не дифференцируема в некоторых точках.
Утверждение, что в 1861 г. Вейерштрасс первый построил пример функции непрерывной, но не дифференцируемой ни в одной точке, основано на статье Шварца (1873). Бесспорно, что Вейерштрасс представил свой знаменитый пример Академии Наук в 1872 г. [1, стр. 111–112]
ЧИСЛО ЭЙЛЕРА. Существование предела limn->?(1 + 1/n)n впервые установил Д.Бернулли. Обозначение e введено Эйлером. [1, стр. 37]
ЯВЛЕНИЕ ГИББСА. Особенность поведения частичных сумм ряда Фурье вблизи точек разрыва была отмечена самим Фурье, а затем Ньюменом и Вильбрагамом. Самое детальное описание явления дал Вильбрагам. После изобретения гармонического анализатора, Майкельсон затронул в печати вопрос, относящийся к одному ряду Фурье. Его статья явилась началом острой дискуссии, в ходе которой Гиббс вновь открыл «явление Гиббса», объяснил его сущность и установил, что это действительно математический факт, а не дефект анализатора. Название установилось после работы Бохера, который, видимо, не знал истории вопроса. [1, стр. 167]