Курс общей астрономии
Шрифт:
Математическая связь синодического и сидерического обращения Луны та же, что и для внутренних планет (см. § 38). Кроме сидерического и синодического периодов обращений в движении Луны различают еще три периода: аномалистический месяц – промежуток времени между двумя последовательными прохождениями Луны через перигей (27,55 средних суток); драконический месяц – промежуток времени между двумя последовательными прохождениями Луны через один и тот же узел своей орбиты (27,21 средних суток); тропический месяц – промежуток времени, в течение которого долгота Луны увеличивается на 360°. Вследствие прецессии тропический месяц короче сидерического месяца приблизительно на 7 секунд. Драконический месяц короче сидерического из-за движения узлов лунной орбиты навстречу движению Луны, а аномалистический месяц длиннее сидерического потому, что перигей лунной орбиты движется в ту же сторону, что и сама Луна.
§ 79. Вращение и
Луна обращена к Земле всегда одной и той же стороной, одним и тем же полушарием, так как она вращается вокруг своей оси с тем же периодом (и в том же
направлении), с каким она обращается вокруг Земли, т.е. “звездные сутки” на Луне составляют 27,32 земных средних суток. Ось вращения Луны наклонена к плоскости
лунной орбиты на угол 83° 20' (изменяется в пределах от 83° 10' до 83° 31’). Таким образом, плоскость лунного экватора с плоскостью лунной орбиты составляет угол 6°39', а с плоскостью эклиптики 1° 30'. При этом плоскость эклиптики лежит между плоскостями лунного экватора и орбиты Луны и все три плоскости пересекаются по одной прямой. Последнее замечательное обстоятельство было обнаружено Кассини в 1721 г. и называется законом Кассини. В каждый данный момент с Земли видна ровно половина поверхности Луны, но продолжительные наблюдения позволяют изучать почти 60% ее поверхности. Это возможно благодаря явлениям, носящим общее название либрации (качаний) Луны. Оптические, или видимые либрации, при которых Луна в действительности никаких “колебаний” не совершает, бывают трех видов: по долготе, по широте и параллактическая. Либрация по долготе вызывается тем, что Луна вращается вокруг оси равномерно, а ее движение по орбите согласно второму закону Кеплера вблизи перигея быстрее, а вблизи апогея – медленнее. Поэтому за четверть месяца после прохождения перигея П (рис. 57) Луна пройдет путь больше четверти всей орбиты, а вокруг оси повернется ровно на 90°. Точка а, которая ранее была в центре лунного диска, теперь будет видна уже левее центра диска (сместится к востоку).
В том же направлении сместится и точка b, которая раньше была видна на правом (западном) краю диска, и, следовательно, станет видимой часть поверхности Луны за западным краем ее диска. В апогее А будет видна та же поверхность Луны, что и в перигее, но за четверть месяца после прохождения апогея Луна пройдет меньше четверти всей орбиты, а вокруг оси снова повернется ровно на 90°, и теперь уже будет видна часть поверхности Луны за восточным краем ее диска. Период либрации по долготе равен аномалистическому месяцу, а наибольшая возможная величина ее 7° 54'. Либрация по широте возникает от наклона оси вращения Луны к плоскости ее орбиты и сохранения направления оси в пространстве при движении Луны (рис. 58).
В результате с Земли попеременно видна то часть поверхности Луны, расположенная вокруг ее южного полюса, то, наоборот, вокруг северного полюса. Период либрации по широте равен драконическому месяцу, а ее величина достигает 6°50’. Суточная или параллактическая либрация возникает вследствие сравнительной близости Луны к Земле. Поэтому из разных точек Земли поверхность Луны видна неодинаково. Два наблюдателя, находящиеся в двух противоположных точках земного экватора, в один и тот же момент видят несколько различные области лунной поверхности. Так, наблюдатель, для которого Луна только еще восходит, видит часть поверхности Луны за ее западным краем диска, а второй наблюдатель, для которого Луна в этот момент уже заходит, этой части поверхности Луны не видит, но зато видит часть поверхности за восточным краем диска. Параллактическая либрация составляет около 1°.
Физическая либрация, т.е. действительное “качание” Луны, происходит оттого, что большая полуось лунного эллипсоида периодически отклоняется от направления на Землю, а притяжение Земли стремится вернуть ее в это положение. Величина физической либрации очень мала – около 2».
§ 80. Покрытия светил Луной. Солнечные затмения
При движении вокруг Земли Луна проходит перед более далекими светилами и своим диском может их заслонить. Это явление носит общее название покрытий светил Луной. Определение точных моментов начала и конца покрытий имеет большое значение для изучения движения Луны и формы ее диска. Чаще всего происходят покрытия звезд, реже случаются покрытия планет.
Покрытия Солнца Луной называются солнечными затмениями. Солнечное затмение имеет различный вид для разных точек земной поверхности. Диск Солнца будет целиком закрыт только для наблюдателя, находящегося внутри конуса лунной тени, максимальный диаметр которой на поверхности Земли не превосходит 270 км. В этой сравнительно узкой области земной поверхности, куда падает тень от Луны, будет видно полное солнечное затмение (рис. 59). В областях земной поверхности, куда падает полутень от Луны, внутри так называемого
§ 81. Лунные затмения
Земля, освещаемая Солнцем, отбрасывает от себя тень (и полутень) в сторону, противоположную Солнцу (рис. 60). Так как диаметр Солнца больше диаметра Земли, то ее тень подобно лунной тени имеет форму постепенно суживающегося конуса. Конус земной тени длиннее конуса лунной, а его диаметр на расстоянии Луны превышает диаметр Луны больше, чем в 2,5 раза. При движении вокруг Земли Луна может попасть в конус земной тени, и тогда произойдет лунное затмение. Поскольку во время затмения Луна в действительности лишается солнечного света, то лунное затмение видно на всем ночном полушарии Земли и для всех точек этого полушария начинается в один и тот же физический момент и заканчивается также одновременно. Но эти моменты по местному времени каждой точки Земли, конечно, различны и зависят от географической долготы места. Так как Луна движется с запада на восток, то первым входит в земную тень левый край Луны. На нем появляется ущерб, который постепенно увеличивается, и видимый диск Луны принимает форму серпа, отличающегося от серпа лунных фаз тем, что линия, отделяющая светлую часть диска Луны от затемненной, представляет собой дугу окружности с радиусом, приблизительно в 2,5 раза большим радиуса лунного диска, тогда как при лунных фазах терминатор имеет вид полуэллипса.
Если Луна полностью войдет в земную тень, то произойдет полное затмение Луны, если в тени окажется только часть Луны, то затмение будет частным. Так как диаметр земной тени на расстоянии Луны от Земли может превышать диаметр Луны до 2,8 раза, то полное лунное затмение может продолжаться почти до двух часов. Полному или частному лунному затмению предшествует (и завершает их) полутеневое лунное затмение, когда Луна проходит сквозь земную полутень. Полутеневое затмение может быть и без последующего наступления теневого затмения. Совершенно очевидно, что затмения Луны могут происходить только во время полнолуний.
§ 82. Условия наступления солнечных и лунных затмений
Если бы плоскость лунной орбиты совпадала с плоскостью эклиптики, то солнечные и лунные затмения происходили бы каждый синодический месяц. Но плоскость лунной орбиты наклонена к плоскости эклиптики под углом в 5° 09', поэтому Луна во время новолуния или полнолуния может находиться далеко от плоскости эклиптики, и тогда ее диск пройдет выше или ниже диска Солнца или конуса тени Земли, и никакого затмения не случится. Чтобы произошло солнечное или лунное затмение, необходимо, чтобы Луна во время новолуния или полнолуния находилась вблизи узла своей орбиты, т.е. недалеко от эклиптики.
Пусть на рис. 61 С, Т и L обозначают центры Солнца, Земли и Луны и находятся в
одной плоскости, перпендикулярной к плоскости эклиптики. Тогда Р LTC = b есть геоцентрическая эклиптическая широта Луны, и если этот угол будет меньше изображенного на рисунке, то произойдет, хотя и непродолжительное, частное затмение Солнца для точки О на Земле. Угол b равен сумме трех углов, а именно: b = Р LTL' + Р L'TC' + Р C'TC.
Но угол LTL’ = r( есть угловой радиус Луны; L’TC’ = r¤ – угловой радиус Солнца;