Курс Трубопроводная арматура. Модуль-кейс Выбор регулирующей арматуры по критерию надежности регулирования
Шрифт:
Рис.1.6. Пример ТА с ручным приводом
Управляемая ТА с электрическим приводом. Электрический привод – это устройство для управления арматурой, использующее электрическую энергию [2]. Электроприводы используются для дистанционного управления арматурой: открытия, закрытия и определенного положения арматуры. Пример электрического привода показан на рис.1.7.
Рис.1.7.
Управляемая ТА с пневматическим приводом. Пневматический привод-устройство для управления арматурой, использующее энергию сжатого воздуха (или другого газа) [2]. Он используется для открытия, закрытия и приведения арматуры в определенное положение. Пример пневматического привода приведен на рис.1.8.
Пневмоприводы чаще используются для защитной арматуры и регулирующей, но не так часто из-за необходимости наличия на предприятии специальной компрессорной системы сжатого воздуха.
Рис.1.8. Пример ТА с пневматическим приводом
Управляемая ТА с гидравлическим приводом. Гидравлический привод – это устройство для управления арматурой, использующее энергию жидкости, находящейся под давлением [2]. Пример гидравлического привода показан на рис.1.9.
Для управления арматурой больших размеров необходимы значительные усилия, непосильные для пневмо- или электропривода, в связи с чем, он оказывается вне конкуренции. Кроме того, гидропривод компактен, прекрасно сочетает высокую нагрузку с плавностью движений. Преимущество гидропривода – это способность сохранять запас гидравлической энергии на случай аварийного включения.
Управляемая ТА с электромагнитным приводом. Электропривод, в котором преобразование электрической энергии в механическую осуществляется устройством на основе взаимодействия электромагнитного поля и сердечника из ферромагнитного материала, является электромагнитным приводом [2].Достоинства электромагнитного привода – это быстродействие, высокая точность, технологичность изготовления, простота обслуживания. Пример электромагнитного привода показан на рис.1.9.
Рис.1.9. Пример ТА с электромагнитным приводом
Автоматически действующая (автономная)трубопроводная арматура – это арматура, отличающаяся тем, что управление и рабочий цикл осуществляется только действием самой рабочей среды без каких-либо посторонних источников энергии. К данному типу арматуры относятся: обратные клапаны, срабатывающие под действием изменения направления потока, и другие виды арматуры [1].
Трубопроводная арматура различается по материалу корпуса. Материалы корпуса, в котором изготавливается арматура, представлены на рис.1.10 [1].
Рис.1.10.
Материал корпуса, из которого изготавливается арматура:
– стальная (из углеродистой стали)
– из коррозионностойкой стали
– из титана
– чугунная (из серого чугуна)
– из ковкого чугуна
– из цветных металлов
– из пластмасс
– из керамики (фарфор)
– чугунная с защитным покрытием (резина, пластмасса, эмаль).
1.2. Конструкция, принцип действия и характеристики трубопроводной арматуры
На рис.1.11. приведены примеры разновидности трубопроводной арматуры.
Из представленных видов арматуры к регулирующей относятся краны, клапаны и затворы. Далее рассматриваются только они.
Кран
Кран – это тип арматуры, у которой запирающий или регулирующий элемент, имеющий форму тела вращения или его части, поворачивается вокруг собственной оси, произвольно расположенной по отношению к направлению потока рабочей среды [2]. Краны изготавливается из различных материалов – металлы и их сплавы, а также пластика. В зависимости от площади поперечного сечения перекрываемого отверстия краны бывают в двух вариациях: полупроходными или полнопроходными.
Рис.1.11. Виды трубопроводной арматуры
У полупроходного крана отверстие меньше труб, присоединяемых как на входе, так и на выходе, а у полнопроходного крана их диаметр совпадает.
В зависимости от числа рабочих положений пробки краны бывают двухходовыми или трехходовыми. В зависимости от формы тела вращения, образующего затвор, краны бывают: конусные, цилиндрические, шаровые[4].
Конусный кран
Конусные краны имеют пробку в виде усеченного конуса, в котором имеется прямоугольное или круглое отверстие (рис.1.12). Корпус крана также имеет конусную поверхность, к которой должна плотно примыкать пробка [4].
В зависимости от способа прижатия пробки различают сальниковые и натяжные краны. В сальниковых кранах между крышкой крана и верхним торцом пробки расположена сальниковая набивка, которая является упругим элементом, создающим постоянное усилие, которое прижимает пробку к корпусу.
Рис.1.12. Конструкция крана с конусной пробкой (сальниковый)
В натяжных кранах снизу пробки имеется стержень с резьбой, который проходит через отверстие в корпусе. Прижатие пробки происходит за счет пружины, одеваемой на винт и стянутой гайкой. Натяжные краны являются более надежными, так как в них работа крана не зависит от свойств сальниковой набивки, которая со временем теряет свои упругие свойства. Исходя из этого, натяжные краны используют в газоснабжении.