Чтение онлайн

на главную

Жанры

Квант. Эйнштейн, Бор и великий спор о природе реальности
Шрифт:

Спектральное распределение энергии излучения абсолютно черного тела описывает то, как полная энергия делится между частотами. Планк предположил, что интенсивность излучения определяется числом осцилляторов, колеблющихся на данной частоте, и теперь должен был придумать способ, позволяющий распределить энергию излучения по осцилляторам. Через несколько недель упорного труда Планк понял, что не может вывести формулу, исходя из физических представлений, так долго воспринимавшихся им как символ веры. В отчаянии он обратился к идеям австрийского физика Людвига Больцмана, наиболее рьяного сторонника теории атомов. На пути к заветной формуле Планку пришлось стать вероотступником и после долгой “открытой неприязни к атомной теории”56 признать, что атом представляет собой нечто большее, чем просто удобное допущение.

Людвиг Больцман был плотным, небольшого роста человеком

со впечатляющей бородой, какие носили в конце XIX века. Он родился в Вене 20 февраля 1844 года в семье акцизного чиновника. Некоторое время Больцман учился игре на пианино у композитора Антона Брукнера, но физиком оказался лучшим, нежели пианистом. В 1866 году Больцман защитил докторскую диссертацию в Венском университете и быстро стал известен благодаря своему фундаментальному вкладу в кинетическую теорию газов, названную так потому, что ее сторонники верили: газы состоят из атомов или молекул, находящихся в постоянном движении. Позднее, в 1884 году, Больцман теоретически обосновал закон, ранее сформулированный на основе анализа экспериментальных данных его прежним наставником Йозефом Стефаном. Согласно этому закону, полная энергия излучения абсолютно черного тела возрастает пропорционально четвертой степени температуры T4, или T x T x T x T. Это значит, что если температуру абсолютно черного тела увеличить в два раза, излученная энергия увеличится в шестнадцать раз.

Больцман был знаменитым педагогом. Несмотря на сильную близорукость, он, хотя и был теоретиком, оказался очень талантливым экспериментатором. Когда в одном из ведущих европейских университетов освобождалось место профессора, его имя обычно стояло в списке претендентов. Только после того, как Больцман отказался от места профессора Берлинского университета, освободившегося после смерти Густава Кирхгофа, эту вакансию, переведя ее в более низкую категорию, предложили Планку. К 1900 году Больцман, всеми признанный теоретик, много раз переезжавший с места на место, был преподавателем Лейпцигского университета. Однако многие, в их числе и Планк, все еще считали его подход к термодинамике неприемлемым.

Больцман верил, что свойства газов, например давление, — это макроскопическое проявление микроскопических процессов, управляемых законами механики и теории вероятности. Те, кто верил в существование атомов, полагали, что законы классической физики Ньютона управляют движением каждой молекулы газа, но использовать эти законы для определения положения и скоростей всего несметного числа молекул газа практически невозможно. В 1860 году двадцативосьмилетнему шотландскому физику Джеймсу Клерку Максвеллу удалось описать движение молекул газа, не измеряя отдельно скорость каждой из них. Воспользовавшись методами статистики и теории вероятности, он нашел наиболее вероятное распределение скоростей молекул газа, беспрестанно сталкивающихся друг с другом и со стенками сосуда. Применение статистики и теории вероятности было смелым новаторством, позволившим Максвеллу объяснить многие свойства газов. Больцман, который был на тринадцать лет моложе Максвелла, пошел по его стопам при обосновании кинетической теории газов. В 70-х годах он продвинулся еще на шаг вперед. Связав энтропию с беспорядком, он предложил статистическую интерпретацию второго закона термодинамики.

Согласно утверждению, известному как принцип Больцмана, энтропия есть мера вероятности осуществления какого-либо определенного состоянии системы. Например, хорошо перетасованная колода карт — это неупорядоченная система с высокой энтропией. Однако новая упаковка, в которой карты упорядочены по мастям и по значениям от двойки до туза, — строго упорядоченная система с низкой энтропией. Согласно Больцману, второй закон термодинамики имеет отношение к эволюции системы из состояния, реализующегося с малой вероятностью (и поэтому с малой энтропией) в более вероятное состояние с большой энтропией. Второй закон термодинамики не является непреложным. Система может перейти из неупорядоченного состояния в более упорядоченное, как и перетасованную колоду можно упорядочить, разложив карты по мастям. Однако шанс, что такой переход произойдет самопроизвольно, настолько мал, что время, которое предстоит ждать этого события, может во много раз превышать возраст Вселенной.

Планк верил, что второй закон термодинамики непреложен и энтропия возрастает всегда. Согласно же интерпретации Больцмана, энтропия возрастает почти всегда. С точки зрения

Планка, между этими двумя формулировками лежала огромная пропасть. Для него стать на точку зрения Больцмана было равнозначно отречению от всего, что он как физик считал святым, но выбора у него не оставалось — надо было вывести правильную формулу для излучения абсолютно черного тела: “До тех пор я не обращал внимания на соотношение между энтропией и вероятностью, совершенно не интересовался им, считая, что каждый вероятностный закон допускает существование исключений. А я в то время был убежден, что второй закон термодинамики справедлив без всяких исключений”57.

Состояние с максимальной энтропией и максимальным беспорядком — наиболее вероятное состояние системы. Для абсолютно черного тела это состояние теплового равновесия — именно то, что требовалось Планку, чтобы найти наиболее вероятное распределение энергии по осцилляторам. Если имеется всего тысяча осцилляторов и десять из них колеблются с частотой , именно они определяют интенсивность излучения на этой частоте. Поскольку частота каждого из электрических осцилляторов Планка фиксирована, количество излучаемой и поглощаемой им энергии зависит только от его амплитуды, то есть от размаха колебаний. Частота колебаний маятника, совершающего пять взмахов за пять секунд, равна одному колебанию в секунду. Однако если при раскачивании движение происходит по большой дуге, маятник обладает большей энергией, чем если бы дуга была меньше. Частота остается неизменной, поскольку она определяется длиной маятника, но избыточная энергия позволяет ему двигаться быстрее, описывая большую дугу. Поэтому маятник совершает то же число колебаний, как такой же маятник, двигающийся по более короткой дуге.

Планк понял, что, используя технику Больцмана, он может получить свою формулу для распределения излучения абсолютно черного тела, только если осцилляторы поглощают и излучают энергию порциями, размер которых пропорционален частоте колебаний. Планк говорил, что “самым важным местом всего расчета” было предположение о том, что при данной частоте энергия состоит из набора равных и неделимых “элементов энергии”. Позднее он назвал их квантами58.

Ведомый своей формулой, Планк был вынужден разделить энергию (E) на порции размером h, где — частота осциллятора, a h — константа. Позднее равенство E = h станет одной из самых известных формул. Если, например, частота будет равна 20, a h = 2, то величина каждого кванта энергии будет равна 20 х 2 = 40. Если при этой частоте полная энергия равна 3600, то, значит, 3600 : 40 = 90 квантов распределены между десятью осцилляторами, колеблющимися с данной частотой. У Больцмана Планк научился методу, позволяющему определить наиболее вероятное распределение этих квантов среди осцилляторов.

Оказалось, что энергия каждого из осцилляторов может равняться только: 0, h, 2h, 3h, 4h и так далее до значения nh, где n — целое число. Это соответствует тому, что поглощается или испускается целое число “элементов энергии” (квантов) размером h. (Напоминает кассира в банке, который может выдавать купюры только достоинством в 1, 2, 5, 10, 20 и 50 фунтов стерлингов.) Поскольку осцилляторы Планка не могут иметь другой энергии, амплитуда их колебаний ограничена. Необычность такого вывода в применении к повседневному миру особенно наглядна, если рассмотреть груз, подвешенный на пружине.

Если амплитуда колебаний груза равна 1 см, его энергия равна 1 (не будем останавливаться на единицах измерения энергии). Если пружину с привязанным к ней тем же грузом растянуть на 2 см, частота колебаний остается прежней. Однако энергия, пропорциональная квадрату амплитуды, будет равна 4. Если правило для энергии осцилляторов Планка применить к грузу на пружине, то в интервале от 1 см до 2 см возможны только колебания с амплитудами 1,42 см и 1,73 см, поскольку соответствующие энергии равны 2 и 359. Например, амплитуда колебаний не может равняться 1,5 см, поскольку в этом случае энергия равнялась бы 2,25. Квант энергии неделим. Осциллятор не может получить часть кванта энергии: либо все, либо ничего. Это не согласуется с повседневной физикой. В обычном мире нет ограничений на размах колебаний и, значит на величину энергии, которая может излучаться или поглощаться или быть испущена одномоментно. Она может принимать любое значение.

Поделиться:
Популярные книги

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Гнев Пламенных

Дмитриева Ольга Олеговна
5. Пламенная
Фантастика:
фэнтези
4.80
рейтинг книги
Гнев Пламенных

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7