Квантово-мистическая картина мира. Структура реальности и путь человека
Шрифт:
В квантовой механике (КМ) такая ситуация является лишь одной из возможных. Состояния системы, когда реализуется только один из множества вариантов, в квантовой механике называют смешанными, или смесью. Смешанные состояния являются по сути классическими — система может быть с определенной вероятностью обнаружена в одном из состояний, но никак не в нескольких состояниях сразу.
Однако известно, что в природе имеет место и совершенно другая ситуация, когда объект находится в нескольких состояниях одновременно. Иными словами, происходит наложение двух или большего числа состояний друг на друга без какого-либо взаимного влияния. Например, экспериментально доказано, что один объект, который мы по привычке называем частицей, может одновременно проходить через две щели в непрозрачном экране. Частица, проходящая через первую щель, — это одно состояние, та
Речь идет о квантовой суперпозиции (когерентной суперпозиции), то есть о суперпозиции состояний, которые не могут быть реализованы одновременно с классической точки зрения. Суперпозиционные состояния могут существовать лишь при отсутствии взаимодействия рассматриваемой системы с окружением. Они описываются посредством так называемой волновой функции, которую также называют вектором состояния. Это описание формализуется заданием вектора в гильбертовом пространстве [9] , определяющим полный набор состояний, в которых может находиться замкнутая система.
9
См. словарь основных терминов в конце книги. Напомню, что выделенные шрифтом места предназначены для читателя, предпочитающего достаточно строгие формулировки или желающего ознакомиться с математическим аппаратом КМ. Эти кусочки можно без боязни за общее понимание текста пропустить, особенно при первом чтении.
Волновая функция — это частный случай, одна из возможных форм представления вектора состояния как функции координат и времени. Это представление системы, максимально приближенное к привычному классическому описанию, предполагающему наличие общего и независимого ни от чего пространства — времени.
Наличие этих двух типов состояний — смеси и суперпозиции — является основой для понимания квантовой картины мира и ее связи с мистической. Другой важной для нас темой будут условия перехода суперпозиции состояний в смесь и наоборот. Эти и другие вопросы мы разберем на примере знаменитого двухщелевого эксперимента [10] .
10
В описании двухщелевого эксперимента мы придерживаемся изложения Ричарда Фейнмана, см.: Фейнман Р. Фейнмановские лекции по физике. М.: Мир, 1977. Т. 3. Гл. 37–38.
Для начала возьмем пулемет и мысленно проведем эксперимент, показанный на рис. 1.
Он не очень хорош, наш пулемет. Он выпускает пули, направление полета которых заранее неизвестно. То ли направо они полетят, то ли налево…. Перед пулеметом стоит броневая плита, а в ней проделаны две щели, через которые пули свободно проходят. Далее стоит «детектор» — любая ловушка, в которой застревают все попавшие в нее пули. По окончании эксперимента можно пересчитать число пуль, застрявших в ловушке, на единицу ее длины и разделить это число на общее количество выпущенных пуль. Или на время стрельбы, если скорость стрельбы считать постоянной. Эту величину — число застрявших пуль на единицу длины ловушки в окрестности некоторой точки Х, отнесенное к полному числу пуль, мы будем называть вероятностью попадания пули в точку Х. Заметим, что мы можем говорить только о вероятности — нельзя сказать определенно, куда попадет очередная пуля. И даже попав в дыру, она может срикошетить от ее края и уйти вообще неизвестно куда.
Мысленно проведем три опыта: первый — когда открыта первая щель, а вторая закрыта; второй — когда открыта вторая щель, а первая закрыта. И, наконец, третий опыт — когда обе щели открыты.
Результат нашего первого «эксперимента» показан на том же рисунке, на графике. Ось вероятности в нём отложена вправо, а координата — это и есть положение точки X. Пунктирная линия показывает распределение вероятности P1 попавших в детектор пуль при открытой первой щели, кривая из точек — вероятность попадания в детектор пуль при открытой второй щели и сплошная линия — вероятность попадания в детектор пуль при обеих открытых щелях, которую мы обозначили как P12. Сравнив величины P1, P2 и P12, мы можем сделать вывод, что вероятности просто складываются,
P1 + P2 = P12.
Итак, для пуль воздействие двух одновременно открытых щелей складывается из воздействия каждой щели в отдельности.
Представим себе такой же опыт с электронами, схема которого показана на рис. 2.
Возьмём электронную пушку, наподобие тех, что когда-то стояли в каждом телевизоре, и поместим перед нею непрозрачный для электронов экран с двумя щелями. Прошедшие через щели электроны можно регистрировать различными методами: с помощью сцинтиллирующего экрана, попадание электрона на который вызывает вспышку света, фотопленки или с помощью счетчиков различных типов, например, счетчика Гейгера.
Результаты подсчетов в случае, когда одна из щелей закрыта, вполне предсказуемы и очень похожи на итоги пулеметной стрельбы (линии из точек и штрихов на рисунке). А вот в случае, когда обе щели открыты, мы получаем совершенно неожиданную кривую P12, показанную сплошной линией. Она явно не совпадает с суммой P1 и P2! Получившуюся кривую называют интерференционной картиной от двух щелей.
Давайте попробуем разобраться, в чём тут дело. Если мы исходим из гипотезы, что электрон проходит либо через щель 1, либо через щель 2, то в случае двух открытых щелей мы должны получить сумму вкладов от одной и другой щели, как это имело место в опыте с пулеметной стрельбой. Вероятности независимых событий складываются, и в этом случае мы бы получили P1 + P2 = P12. Во избежание недоразумений отметим, что графики отражают вероятность попадания электрона в определенную точку детектора. Если пренебречь статистическими ошибками, эти графики не зависят от полного числа зарегистрированных частиц.
Может, мы не учли какой-нибудь существенный эффект, и суперпозиция состояний (то есть одновременное прохождение электрона через две щели) здесь совсем не при чём? Может быть, у нас очень мощный поток электронов, и разные электроны, проходя через разные щели, как-то искажают движение друг друга? Для проверки этой гипотезы надо модернизировать электронную пушку так, чтобы электроны вылетали из нее достаточно редко. Скажем, не чаще, чем раз в полчаса. За это время каждый электрон уж точно пролетит всё расстояние от пушки до детектора и будет зарегистрирован. Так что никакого взаимного влияния летящих электронов друг на друга не будет!
Сказано — сделано. Мы модернизировали электронную пушку и полгода провели возле установки, проводя эксперимент и набирая необходимую статистику. Каков же результат? Он ничуть не изменился.
Но, может быть, электроны каким-то образом блуждают от отверстия к отверстию и только потом достигают детектора? Это объяснение также не подходит: на кривой P12 при двух открытых щелях есть точки, в которые попадает значительно меньше электронов, чем при любой из открытых щелей. И наоборот, есть точки, вероятность попадания электронов в которые более чем вдвое превышает вероятность попадания электронов, прошедших через каждую щель по отдельности.