Логическая игра
Шрифт:
Если вы недостаточно уяснили то, о чем я говорил до сих пор, вам лучше не продолжать чтения, а вернуться назад и перечитать этот параграф еще несколько раз – до тех пор, пока вы не разберетесь во всем до конца. Зато, как только вы усвоите эту часть, все остальное не вызовет у вас никаких затруднений.
Рассмотрение двух других суждений будет несколько проще, если мы условимся вообще опускать слово «булочки». Я нахожу, что весь класс предметов, для которых предназначается поднос с начерченной на нем диаграммой, удобно называть «Универсум», или «Мир». Чтобы испробовать новый термин, скажем, например: «Рассмотрим Мир булочек». (Звучит хорошо,
Разумеется, мы можем брать не только булочки, но и другие предметы и высказывать суждения о «Мире ящериц» или даже о «Мире ос-шершней». (Вы, конечно, согласны, что последний «Мир» просто очарователен и жить в нем – одно удовольствие?)
Вернемся к нашей диаграмме. Мы уже знаем, что
означает «Некоторые x суть y», т. е. «Некоторые свежие суть вкусные».
Разумеется, вы сразу, без всяких объяснений, догадаетесь (я просто уверен в этом), что
означает «Некоторые x суть y'», т. е. «Некоторые свежие суть невкусные».
Поставим теперь на клетку 5 черную фишку и спросим себя, что означает
Мы видим, что клетка xy пуста. Следовательно, нуль в клетке 5 соответствует суждению «Ни один x не есть y», или «Ни одна свежая булочка не вкусная», а это не что иное, как второе из трех суждений, приведенных в начале параграфа.
Точно так же диаграмма
означает «Ни один x не есть y'», или «Ни одна свежая булочка не невкусная».
А как перевести на обычный язык такую диаграмму
Думаю, что вы и без моей помощи разберетесь, что с ее помощью записано двойное суждение: «Некоторые x суть y, и некоторые x суть y'», т. е. «Некоторые свежие (булочки) вкусны, а некоторые свежие (булочки) невкусные».
Может быть, диаграмма
вам покажется более сложной.
Она означает, что «Ни один x не есть y, и ни один x не есть y'», т. е. «Ни одна свежая (булочка) не вкусная, и ни одна свежая (булочка) не невкусная». Отсюда следует весьма любопытное заключение: «Ни одна свежая булочка не существует», т. е. «Ни одна булочка не свежая». Оно связано с тем, что разбиение класса «свежих булочек» на «вкусные» и «невкусные» булочки, если взять их вместе, исчерпывают весь класс «свежих булочек». Иначе говоря, все свежие булочки, которые только существуют, должны принадлежать либо множеству «вкусных булочек», либо множеству «невкусных булочек».
Предположим, что вам необходимо изобразить на диаграмме с помощью фишек суждение, противоположное суждению «Ни одна булочка не свежая», т. е. суждение «Некоторые булочки свежие» (или, если воспользоваться уже употреблявшимися буквенными обозначениями, «Некоторые булочки суть x»). Как это сделать?
Подобная задача вряд ли поставит вас в тупик. Ясно, что красную фишку нужно поставить куда-то на x-половину подноса, поскольку известно, что имеется некоторое количество свежих булочек. Поставить красную фишку на левую клетку нельзя, поскольку вы не можете с уверенностью сказать, что эти булочки вкусные. Точно так же нельзя поставить красную фишку и на правую клетку: ведь ни откуда не следует, что эти булочки невкусные.
Что же делать? Мне кажется, что лучший выход из создавшегося затруднительного положения – поставить красную фишку на линию, отделяющую клетку xy от клетки xy'. Эту ситуацию я буду изображать на диаграмме так
Наши остроумные американские кузины говорят о человеке, который хочет вступить в одну из двух партий, таких, как их партии «демократов» и «республиканцев», но никак не может решить какую именно ему выбрать, что он «сидит на стенке». Это выражение как нельзя лучше подходит к красной фишке, которую вы только что поставили на разделительную линию: ей нравится и клетка 5, и клетка 6, но она не может решиться, в какую из них спрыгнуть. Так и сидит себе, глупышка, верхом на стенке и болтает от нечего делать ногами!
А теперь я хочу предложить вам гораздо более трудную задачу. Как, по-вашему, что означает диаграмма
Ясно, что перед нами какое-то двойное суждение. Оно говорит нам не только, что «Некоторые x суть y», но и что «Ни один x не есть не-y». Следовательно, «все x суть y», т. е. «Все свежие булочки вкусные». Вот мы и узнали, как выглядит последнее из трех суждений, приведенных в начале этого параграфа.
Итак, общее суждение «Все свежие булочки вкусные состоит из двух суждений, взятых вместе: «Некоторые свежие булочки вкусные» и «Ни одна свежая булочка не невкусная».
Аналогично единственномудиаграмма
означает «Все x суть y'», т. е. «Все свежие булочки невкусные».
А что делать с таким суждением, как «Булочка, которую вы мне дали, вкусная»? Оно частное или общее?
– Ну конечно же, частное, – поспешите ответить вы. – Впрочем, одна-единственная булочка вряд ли стоит того, чтобы называть ее «некоторые булочки».
Нет, мой дорогой импульсивный читатель, оно общее. Ведь как ни мало булочек (а я уверяю вас, что меньше их и быть не может), все же они суть (хотя правильнее было бы сказать «они есть») все булочки, которые вы мне дали! Разделив «Мир булочек» на две части (о красной фишке мы пока забудем) – на булочки, которые вы мне дали (для них я отведу верхнюю половину подноса), и булочки, которые вы мне не дали (их мы условимся складывать на нижней половине подноса), – я обнаружу, что на нижней половине подноса булочек полным-полно, а на верхней их очень мало (меньше некуда!). Предположим теперь, что мне нужно рассортировать булочки на каждой половине подноса: отложить налево вкусные булочки, направо – невкусные. Начну я со всех булочек, которые вы мне дали. Сортировать их я буду самым тщательным образом, приговаривая время от времени: «Ну что за щедрый человек! Чем я смогу отплатить ему за его доброту?» Все вкусные булочки, лежащие на верхней половине подноса, я сложу в левую клетку. Думаю, что это не займет у меня слишком много времени!