Логика
Шрифт:
Положения, в принципе не допускающие проверки, надо, конечно, отличать от утверждений, непроверяемых лишь сегодня, на нынешнем уровне развития науки. Сто с небольшим лет назад представлялось очевидным, что мы никогда не узнаем химического состава отдалённых небесных тел. Различные гипотезы на этот счёт казались принципиально непроверяемыми. Но после создания спектроскопии они сделались не только проверяемыми, но и перестали быть гипотезами, превратившись в экспериментально устанавливаемые факты.
Утверждения, не допускающие проверки сразу, не отбрасываются, если в принципе остаётся возможность проверки их в будущем. Но обычно такие утверждения не становятся предметом серьёзных научных дискуссий.
Так
К способам теоретического обоснования относится также проверка выдвинутого положения на приложимость его к широкому классу исследуемых объектов. Если утверждение, верное для одной области, оказывается достаточно универсальным и ведёт к новым заключениям не только в исходной, но и в смежных областях, его объективная значимость заметно возрастает. Тенденция к экспансии, к расширению сферы своей применимости в большей или меньшей мере присуща всем плодотворным научным обобщениям.
Хорошим примером здесь может служить гипотеза квантов, выдвинутая М.Планком. В конце прошлого века физики столкнулись с проблемой излучения так называемого абсолютно чёрного тела, т.е. тела, поглощающего все падающее на него излучение и ничего не отражающего. Чтобы избежать не имеющих физического смысла бесконечных величин излучаемой энергии, Планк предположил, что энергия излучается не непрерывно, а отдельными дискретными порциями — квантами. На первый взгляд гипотеза казалась объясняющей одно сравнительно частное явление — излучение абсолютно чёрного тела. Но если бы это действительно было так, то гипотеза квантов вряд ли удержалась бы в науке. На самом деле введение квантов оказалось необычайно плодотворным и быстро распространилось на целый ряд других областей. А.Эйнштейн разработал на основе идеи о квантах теорию фотоэффекта, Н.Бор — теорию атома водорода. В короткое время квантовая гипотеза объяснила из одного основания чрезвычайно широкое поле весьма различных явлений.
Расширение поля действия утверждения, его способность объяснять и предсказывать совершенно новые факты является несомненным и важным доводом в его поддержку. Подтверждение какого-то научного положения фактами и экспериментальными законами, о существовании которых до его выдвижения невозможно было даже предполагать, прямо говорит о том, что это положение схватывает глубокое внутреннее родство изучаемых явлений.
Трудно назвать утверждение, которое обосновывалось бы само по себе, в изоляции от других утверждений. Обоснование всегда носит системный характер. Включение нового положения в систему других положений, придающую устойчивость своим элементам, является одним из наиболее важных шагов в его обосновании.
Подтверждение следствий, вытекающих из теории, является одновременно и подкреплением самой теории. С другой стороны, теория сообщает выдвинутым на её основе положениям определённые импульсы и силу и тем самым содействует их обоснованию. Утверждение, ставшее частью теории, опирается уже не только на отдельные факты, но во многом также на широкий круг явлений, объясняемых теорией, на предсказание ею новых, ранее неизвестных эффектов, на связи её с другими научными теориями и т.д. Включив анализируемое положение в теорию, мы тем самым распространяем на него ту эмпирическую и теоретическую поддержку, какой обладает теория в целом.
Этот момент не раз отмечался философами и учёными, размышлявшими об обосновании знания.
Так, философ Л.Витгенштейн писал о целостности и системности знания: «Не изолированная аксиома бросается мне в глаза как очевидная, но целая система, в которой следствия и посылки взаимно поддерживают друг друга». Системность распространяется не только на теоретические положения, но и на данные опыта: «Можно сказать, что опыт учит нас каким-то утверждениям. Однако он учит нас не изолированным утверждениям, а целому множеству взаимозависимых предложений. Если бы они были разрозненны, я, может быть, и сомневался бы в них, потому что у меня нет опыта, непосредственно связанного с каждым из них». Основания системы утверждений, замечает Витгенштейн, не поддерживают эту систему, но сами поддерживаются ею. Это значит, что надёжность оснований определяется не ими самими по себе, а тем, что над ними может быть надстроена целостная теоретическая система. «Фундамент» знания оказывается как бы висящим в воздухе до тех пор, пока на нем не будет построено устойчивое здание. Утверждения научной теории взаимно переплетены и поддерживают друг друга. Они держатся, как люди в переполненном автобусе, когда подпирают со всех сторон, и они не падают, потому что некуда упасть.
Поскольку теория сообщает входящим в неё утверждениям дополнительную поддержку, совершенствование теории, укрепление её эмпирической базы и прояснение её общих, в том числе философских предпосылок одновременно является вкладом в обоснование входящих в неё утверждений.
Среди способов прояснения теории особую роль играют выявление логических связей её утверждений, минимизация её исходных допущений, построение её в форме аксиоматической системы и, наконец, если это возможно, её формализация.
При аксиоматизации теории некоторые её положения избираются в качестве исходных, а все остальные положения выводятся из них чисто логическим путём. Исходные положения, принимаемые без доказательства, называются аксиомами (постулатами), положения, доказываемые на их основе, — теоремами.
Аксиоматический метод систематизации и прояснения знания зародился ещё в античности и приобрёл большую известность благодаря «Началам» Евклида — первому аксиоматическому истолкованию геометрии. Сейчас аксиоматизация используется в математике, логике, а также в отдельных разделах физики, биологии и др. Аксиоматический метод требует высокого уровня развития аксиоматизируемой содержательной теории, ясных логических связей её утверждений. С этим связана довольно узкая его применимость и наивность попыток перестроить всякую науку по образцу геометрии Евклида.
Кроме того, как показал логик и математик К.Гёдель, достаточно богатые научные теории (например, арифметика натуральных чисел) не допускают полной аксиоматизации. Это говорит об ограниченности аксиоматического метода и невозможности полной формализации научного знания.
Методологическая аргументация представляет собой обоснование отдельного утверждения или целостной концепции путём ссылки на тот несомненно надёжный метод, с помощью которого получено обосновываемое утверждение или отстаиваемая концепция.
Представления о сфере методологической аргументации менялись от одной эпохи к другой. Существенное значение придавалось ей в Новое время, когда считалось, что именно методологическая гарантия, а не соответствие фактам как таковое, сообщает суждению его обоснованность. Современная методология науки скептически относится к мнению, что строгое следование методу способно само по себе обеспечить истину и служить её надёжным обоснованием. Возможности методологической аргументации различны в разных областях знания. Ссылки на метод, с помощью которого получено конкретное заключение, обычны в естественных науках, но крайне редки в гуманитарных науках и почти не встречаются в практическом и тем более художественном мышлении.