Чтение онлайн

на главную

Жанры

Шрифт:

Член Петербургской академии наук Евграф Степанович Федоров (1853-1919 гг.) прославил русскую науку исследованиями в области минералогии и кристаллографии, ставшими известными во всем мире. Его основное открытие состояло в следующем. Для любого вещества, способного к кристаллизации, существует определенное, весьма небольшое количество геометрических форм, которые принимают возникающие кристаллы. Независимо от того, как шел процесс кристаллизации, несмотря на огромное количество внешних факторов и причин, которые сопутствовали этому процессу, существует лишь вполне ограниченное число возможных форм кристаллов, или законов, как их назвал Е. Федоров, возможных построений кристаллической решетки.

Но величие исследователя состоит не только в том, что ему

удалось установить новый,, неизвестный дотоле факт, а в том, что открытая им закономерность является проявлением некоторых общих свойств нашего материального мира. И структура кристаллической решетки - это один из фрагментов вообще организации материи.

Исследования Е. Федорова показывают, что, во-первых, образование различных организационных форм подчиняется некоторым общим законам, управляющим нашим миром, переступать которые никому не дано; вовторых, приводят к выводу о необходимости специального исследования проблем организации материи, примером которой являются формы кристаллов. И первый из таких общих законов, которым подчиняются любые системы, - это закон, названный "принципом устойчивости". Речь идет о таких состояниях равновесия систем, которые не могут разрушиться малыми внешними возмущениями. Этот принцип студенты иногда в шутку называют "принципом карандаша" или "принципом Колумба", имея в виду легенду, согласно которой великий путешественник умел ставить яйцо вертикально на острую вершину, не разбивая его. Конечно, теоретически яйцо, так же как и карандаш, можно поставить на острие, такое положение равновесия существует и не противоречит законам физики. Но долго на острие, скажем, карандаш стоять не будет. Все дело в принципиальной стохастичности мира, в котором мы живем и где любая система, любое тело, любой объект непрерывно испытывают случайные, непредсказуемые возмущения. Если бы нам и удалось поставить карандаш на его острие, то в следующий момент какое-либо случайное возмущение, например колебание воздуха или незаметная для глаза вибрация подставки, отклонит его от вертикального положения и он упадет под действием силы тяжести. Так что наблюдать мы можем лишь те положения равновесия, о которых можно сказать, что "дальше падать некуда!".

В свете сказанного открытие Е. Федорова означает, что нам известны все устойчивые кристаллические формы организации материи. И чтобы разрушить ту или иную кристаллическую решетку, надо приложить значительные усилия.

Теория организации начала оформляться с того момента, когда ученые увидели, как важно для понимания природы изучаемых процессов уметь выделять устойчивые, долговременно существующие характеристики, которые и являются основными фрагментами организации. И вот почему академика Е. Федорова мы с полным правом можем называть "отцом теории организации".

Знание состояний равновесия системы и тех свойств, которыми обладают эти состояния, может оказать неоценимую помощь при решении многочисленных задач практического характера. Например, тот же процесс кристаллизации показывает, что окончательным предельным состоянием, в котором в конце концов оказывается кристаллизирующееся вещество, то есть форма его кристалла, и будет его устойчивым положением равновесия. И благодаря исследованиям Е. Федорова мы это состояние можем знать заранее.

Естественные науки, и прежде всего физика, создали хорошую методическую базу для изучения структур, определяющих развитие тех или иных процессов механических, технологических, биологических... Знание основ этого метода может оказаться очень полезным и для решения гораздо более трудных проблем общественной природы.

Мы живем в непрестанно меняющемся мире, где те организационные формы, которые были устойчивыми при одних условиях, становятся неустойчивыми при их изменении; происходит перестройка структуры системы.

Такую перестройку можно сравнить с изменением характера горной реки, когда она, вырвавшись из скалистой теснины на равнину, разливается и из мощного и бурного потока, который пробивал себе путь в скалах, превращается в реку, спокойно несущую дальше свои воды.

С проблемой перестройки предельных состояний связана специальная научная дисциплина "Теория катастроф".

Сейчас ей посвящено много солидных исследований и литературных работ. Занимается она изучением явлений, связанных с качественной перестройкой структуры, или организации процесса. Так как эту проблему долго разрабатывали преимущественно физики, которые исследовали много интересных явлений, связанных с возникновением новых структур, то приведем еще один пример из физики, который поможет нам более отчетливо увидеть некоторые особенности, связанные с изменением структуры системы в процессе ее функционирования. Пример, который мы сейчас рассмотрим, был изучен еще Л. Эйлером более двухсот лет назад и оказался, вероятно, толчком для создания современной теории катастроф.

Рис. 1

Предположим, что у нас есть круглая вертикальная колонна (см. рис.), на которую давит сверху некоторая сила (груз). Если эта сила мала, то с колонной ничего не произойдет: она будет находиться в вертикальном положении равновесия. Предположим теперь, что на колонну мы подействовали некоторой горизонтальной силой, например ударили по ней кувалдой. Что с нею произойдет под действием этого удара?

Колонна как-то изогнется и начнет колебаться около своего положения равновесия. В силу естественного демпфирования (например, трения о воздух) эти колебания будут постепенно затухать, а колонна возвращаться к своему исходному положению равновесия.

Но так будет происходить только в том случае, если вертикальная нагрузка достаточно мала. А что произойдет, если эта нагрузка станет увеличиваться?

Оказывается, общий характер колебаний колонны под действием боковых ударов не будет изменяться до тех пор, пока вертикальная нагрузка не окажется равной некоторой критической величине. Как только эта нагрузка ее превзойдет, характер всего процесса качественно изменится. И первое, что обнаружится, - изменение самой формы равновесия (вертикальное положение колонны, которое было устойчивым и которое поэтому мы и могли наблюдать) теперь перестанет быть устойчивым и вместо него появится целое множество (совокупность) новых положений равновесия. Это множество новых состояний равновесия будет представлять собой поверхность вращения, образующая которой - полуволна синусоиды. Значит, если теперь на нашу колонну подействует случайное возмущение, то она начнет колебаться около одного из новых положений равновесия. Сказать, около какого, мы заранее не сможем: ведь возмущение было случайным!

Уважаемый читатель, просим запомнить этот факт, так как позднее, говоря об эволюции сложных систем, нам придется к нему обращаться.

Вот эти критические значения нагрузки, при которых происходит качественная перестройка всего характера изучаемого явления, носят название точек бифуркации, или точек катастроф. Они играют важную роль в изучении сложных систем.

Можно рассказать много интересного о том, как связано с точками бифуркации возникновение турбулентности, появление ячеистой структуры в явлениях конвекции и многое-многое другое. Для нас же достаточно знать, что существуют критические значения параметров системы, с которыми связана качественная перестройка системы, ее эволюции, характера движения.

Множество точек бифуркации тоже можно считать элементом организации системы. И чем сложнее система, тем, как правило, в ней больше бифуркационных значений параметров.

Но не только в физических системах появляются критические бифуркационные значения параметров. Они возникают и играют значительную роль и в биологии, и в экологии, и, наверное, в экономике, и в политических науках. В самом деле, если в процессе эволюции живого какой-то параметр превзойдет однажды свое критическое (бифуркационное) значение, то, возможно, начнется необратимый процесс перехода биосистемы в новое стационарное состояние, свойства которого заранее предсказать подчас бывает невозможным. Поясним сказанное на примере из области биологии.

Поделиться:
Популярные книги

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6