Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Шрифт:
Задачи на умножение типа «3 на 3» будут последним барьером на пути к грандиозному финалу в виде умножения «5 на 5».
Здесь, как и в случае с задачами типа «3 на 2», существует многообразие методов, которые могут быть использованы для упрощения процесса умножения.
Метод разложения
Начнем с метода разложения. К несчастью, большинство трехзначных чисел не раскладывается на множители в виде отдельных цифр, но если разложение найдется, процесс вычисления будет не таким уж и сложным.
Обратите
Задачу типа «5 на 1» можно решить в два действия, если представить 59 688 как 59 000 + 688, а затем сложить результаты задач «2 на 1» (59 000 х 4) и «3 на 1» (688 х 4), как показано ниже.
Если оба трехзначных числа можно разложить на «2 на 1», то задача «3 на 3» упрощается до «2 на 2 на 1 на 1», как в следующем примере.
Как обычно, лучше сразу избавиться от трудного элемента задачи, то есть от умножения типа «2 на 2». Как только вы это сделаете, задача будет сведена к «4 на 1», а затем к «5 на 1».
Очень часто бывает так, что раскладывается только один из сомножителей. В таком случае задача сводится к умножению типа «3 на 2 на 1», как в этом примере:
Следующая задача «3 на 3» в действительности просто замаскированная задача типа «3 на 2».
Путем удвоения 435 и уменьшения 624 наполовину получаем эквивалентную задачу.
Метод совместной близости
Вы готовы к чему-нибудь попроще? Следующий прием, который был представлен еще в главе 0, основан на такой алгебраической формуле:
(z + a)(z + b) = z
2 + za + zb + ab
Переписываем ее:
(z + a)(z + b) = z(z + a + b) + ab
Эта формула справедлива при любых значениях z,aи b.
Мы будем пользоваться ею всякий раз, когда трехзначные числа, которые нужно перемножить (z х a и z х b), находятся близко к легкому числу z (типичный случай, когда число z имеет большое количество нулей). Например, умножим
Будем рассматривать эту задачу как (100 + 7) х (100 + 11).
Задав z = 100, a = 7, b = 11, наша формула даст:
100 (100 + 7 + 11) + 7 х 11 = 100 х 118 + 77 = 11 877.
Я схематически изобразил решение так:
Числа в скобках равны разностям между исходными числами и нашим подходящим «базовым числом» (здесь z = 100).
Число 118 получено путем сложения 107 + 11 или 111 + 7. По законам алгебры, эти суммы эквивалентны, так как (z + a) + b = (z + b) + a.
На этот раз без лишних слов решим еще один «ускоренный» пример:
Метод работает великолепно!
Теперь немного повысим ставки и возьмем большее базовое число.
Хотя данный метод, как правило, используется для умножения трехзначных чисел, его также можно применить для задач типа «2 на 2».
Здесь базовое число 70 умножается на 81 (78 + 3). В таких задачах даже действие на сложение обычно очень простое.
Этот метод также применим, когда оба числа меньше базового. Как, например, в следующей задаче, где оба числа меньше 400.
Число 383 получено путем вычитания 396 — 13 или 387 — 4.
Данный метод также можно использовать и для задач типа «2 на 2», таких как следующие.
В следующем примере базовое число по величине находится между перемножаемыми числами.
Число 409 получено в ходе операций 396 + 13 или 413 — 4.
Обратите внимание, что, поскольку числа –4 и 13 имеют противоположные знаки, из результата умножения необходимо вычесть 52.
Поднимем ставки еще выше, до уровня, где второе действие требует умножения типа «2 на 2».