Чтение онлайн

на главную - закладки

Жанры

Магия чисел. Ментальные вычисления в уме и другие математические фокусы
Шрифт:

Почему это работает

Для выполнения быстрого расчета нужно просто умножить число с линии 7 на 11. Здесь 61 х 11 = 671. Причина эффективности этого приема проиллюстрирована в таблице ниже. Если обозначить числа на линиях 1 и 2 как х и у соответственно, а затем просуммировать числа на всех линиях от 1 до 10, то в итоге выйдет 55х + 88у, что составляет 11 х (5х + 8у). А это равно произведению числа 11 на число на линии 7.

Что

касается прогнозирования, то здесь используется тот факт, что для любых положительных чисел a, b, c, d, если a/b < c/d, то значение дроби, которая получается путем «ошибочного сложения дробей» (то есть путем сложения числителей и сложения знаменателей), будет лежать между двумя исходными дробями. Другими словами, применяем неравенства:

Таким образом, частное от деления числа на линии 10 на число на линии 9, (21х + 34у)/(13х + 21у), должно быть между

Следовательно, частное должно начинаться с цифр 1,61, как и было предсказано.

По сути, если продолжать такую «чехарду» до бесконечности, отношение последовательно идущих значений будет все ближе подбираться к значению

Это число с настолько огромным количеством удивительно красивых и загадочных свойств, что его часто называют золотым отношением (золотым сечением).

МАГИЧЕСКИЕ КВАДРАТЫ

Вы готовы к испытанию совершенно иного рода? Ниже размещен пример «магического квадрата». Сколько же о нем было написано еще во времена Древнего Китая! Но мы расскажем о способе создания магических квадратов в развлекательном стиле. Эту заученную схему я исполнял годами.

Я показываю визитку со следующей надписью на задней стороне:

И говорю: «Перед вами магический квадрат. Это самый маленький магический квадрат, который можно создать, используя числа от одного до шестнадцати. Здесь суммы чисел в каждой строке и каждом столбце дают одно и то же число — тридцать четыре. Я провел весьма широкое исследование на тему магических квадратов, поэтому предлагаю создать один прямо на ваших глазах».

Затем я прошу кого-либо из аудитории назвать любое число больше 34. Предположим, это будет 67. После достаю еще одну визитку, рисую пустую сетку «4 на 4» и помещаю число 67 справа от нее. Далее прошу человека указывать на квадраты по одному, в любом порядке. Как только он указывает на пустую клетку, я незамедлительно записываю в нее число.

Конечный результат выглядит так:

Я продолжаю: «В случае с первым магическим квадратом каждая строка и каждый столбец при сложении давали тридцать четыре. (На этом этапе я обычно откладываю карточку с квадратом в сторону.) Теперь посмотрим, что у нас получилось с новым квадратом». Убедившись, что элементы каждой строки и каждого столбца действительно дают в сумме 67, я говорю: «Но я не останавливаюсь на этом. Специально для вас я решил пойти еще на один шаг дальше. Обратите внимание, что обе диагонали при сложении дают шестьдесят семь!» Затем я указываю на то, что

сумма четырех квадратов в левом верхнем углу тоже равна 67 (16 + 19 + 22 + 10 = 67), как и остальных квадратов такого же размера! «Они все в сумме равны шестидесяти семи. Но не верьте мне на слово. Пожалуйста, оставьте себе магический квадрат в качестве сувенира и проверьте его потом сами!»

КАК СОСТАВИТЬ МАГИЧЕСКИЙ КВАДРАТ

Вы можете создать магический квадрат, который при суммировании давал бы любое число, воспользовавшись исходным магическим квадратом с суммой 34. Держите его при этом на виду. Пока вы чертите сетку «4 на 4», устно выполните следующие вычисления.

1. Вычтите 34 из заданного числа (например, 67–34 = 33)

2. Разделите полученное число на 4 (например, 33/4 = 8 с остатком 1)

Частное — это первое «магическое» число. Частное плюс остаток — второе «магическое» число. (Здесь магические числа 8 и 9.)

3. Когда доброволец указывает на пустой квадрат, незаметно взгляните на квадрат 34, чтобы узнать, какой квадрат ему соответствует. Если это квадрат с числами 13, 14, 15 или 16, прибавьте к ним второе число (в нашем примере 9). Если нет, то прибавьте первое магическое число (8).

4. Вставляйте подходящее число до тех пор, пока не закончите составление магического квадрата.

Обратите внимание: когда заданное число четное, но не кратное 4, ваши первое и второе магические числа будут одинаковыми. Так что у вас будет только одно магическое число для прибавления его к числам из квадрата 34.

Почему это работает

Этот метод работает потому, что каждая строка, столбец и диагональ из исходного магического квадрата при сложении дают 34. Предположим, заданное число 82. Так как 82–34 = 48 (и 48/4 = 12), то следует прибавлять 12 к каждому числу в каждой ячейке исходного магического квадрата. В результате каждая «группа четверок», которая до этого равнялась 34, будет при сложении давать 34 + 48 = 82. Можете убедиться в этом на примере следующего магического квадрата.

С другой стороны, если бы заданным числом было 85, магическими числами были бы 12 и 15. Поэтому мы прибавим 15 к квадратикам, которые содержат числа 13, 14, 15 и 16. Так как каждые строка, столбец и квадрат «2 на 2» содержат одно из этих чисел, то каждая группа из 4 клеток будет при сложении давать 34 + 12 х 3 + 15 = 85, как в следующем магическом квадрате.

В качестве интересного математического пустячка позвольте отметить еще одно удивительное свойство знаменитого магического квадрата «3 на 3», показанного ниже.

В нем не только строки, столбцы и диагонали дают в сумме 15, но если вы представите строки магического квадрата как трехзначные числа, то сможете удостовериться с помощью калькулятора, что 4922 + 3572 + 8162 = 2942 + 7532 + 6182. Так же как 4382 + 9512 + 2762 = 8342 + 1592 + 6722. Если вам любопытно, почему так происходит, вы найдете ответ в моей статье Magic «Squares» Indeed! («В самом деле “магические” квадраты!»), ссылка на которую дана в библиографии.

Поделиться:
Популярные книги

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3