Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

8.9.2. Визуализация решения систем неравенств

Пожалуй, еще более полезным и наглядным средством является визуализация решения системы уравнений в виде неравенств. В пакете plots имеется специальная графическая функция inequal, которая строит все граничные линии неравенств и позволяет раскрасить разделенные ими области различными цветами:

inequal(ineqs, xspec, yspec, options)

Параметры этой функции следующие: ineqs — одно или несколько неравенств или равенств или список неравенств или равенств; xspec — xvar=min_x..max_x; yspec — yvar=min_y..max_y; о — необязательные параметры, например, указывающие

цвета линий, представляющих неравенства или равенства, и областей, образованных этими линиями и границами графика. Пример применения этой функции представлен на рис. 8.59.

Рис. 8.59. Пример графической интерпретации решения системы неравенств

Обратите внимание на задание цветов: optionsfeasible задает цвет внутренней области, для которой удовлетворяются все неравенства (равенства), optionsopen и optionsclosed задают цвета открытых и закрытых границ областей графика, optionsexcluded используется для цвета внешних областей. График дает весьма наглядную интерпретацию действия ряда неравенств (или равенств).

8.9.3. Иллюстрация итерационного решения уравнения f(x)=х

Классическим методом решения нелинейных уравнений является сведение их к виду х = f(x) и применение метода простых итераций хk = s(хk-1) при заданном значении x0. Приведем пример такого решения:

> f := х ->3*ln(x+1);

f := х→3ln(x + 1)

> x||0 := 0.5;

x0 :=.5

> x0 := .5;

x0 :=.5

> for k from 1 to 16 do x||k := evalf(f(x||(k-1))); od;

x1 := 1.216395324
x2 := 2.387646445
x3 : = 3.660406248
x4 : = 4.617307866
x5 := 5.177557566
x6 : = 5.462768931
x7 := 5.598173559
x8 := 5.660378631
x9 := 5.688529002
x10 := 5.701181910
x11 := 5.706851745
x12 := 5.709388956
x13 := 5.710523646
x14 := 5.711030964
x15 := 5.711257755
x16 := 5.711359134

Нетрудно заметить, что значения х_k в ходе итераций явно сходятся к некоторому значению. Проведем проверку решения, используя встроенную функцию solve:

> f(x) = х; solve(%, х);

3 ln(x + 1) = х
0, -3LambertW(-1, -1/3e(-1/3))-1

Результат выглядит необычно — помимо довольно очевидного корня х=0 значение другого корня получено в виде специальной функции Ламберта. Впрочем, нетрудно найти и его численное значение:

> evalf(%);

0., 5.711441084

К нему и стремятся промежуточные результаты

решения. Однако как сделать процесс решения достаточно наглядным? Обычно для этого строят графики двух зависимостей — прямой х и кривой f(x) — и наносят на них ступенчатую линии перемещения точки х_k. Специальной функции для графиков подобного рода Maple не имеет. Однако можно составить специальную процедуру для их построения. Ее листинг, взятый из примера, описанного в пакете обучения системе Maple — PowerTools —представлен на рис. 8.60.

Рис. 8.60. Иллюстрация процесса итераций

На рис. 8.60 представлено задание процедуры rec_plot( f1, а, b, х0).

Параметрами этой процедуры являются: f1 — функция f(x): а и b — пределы изменения х при построении графика; х0 — значение х, с которого начинаются итерации. Используя эту процедуру можно наблюдать график, иллюстрирующий итерационный процесс. Он представлен на рис. 8.60 снизу.

Нетрудно заметить, что для данной функции процесс итераций, хотя и не очень быстро, но уверенно сходится к точке пересечения прямой у=х и кривой y=f(x). Вы можете, меняя зависимость f(x), провести исследования сходимости уравнений x=f(x).

8.9.4. Визуализация ньютоновских итераций в комплексной области

Теперь займемся довольно рискованным экспериментом — наблюдением ньютоновских итераций с их представлением на комплексной плоскости. На рис. 8.61 задана функция f(z) комплексного аргумента. Проследить за поведением этой функции на комплексной плоскости в ходе ньютоновских итераций в соответствии с выражением z=f(z) позволяет графическая функция complexplot3d из пакета plots.

Рис. 8.61. Наблюдение за процессом ньютоновских итераций в трехмерном пространстве

Наблюдаемая картина весьма необычна и свидетельствует о далеко не простом ходе итерационного процесса. А рискованной эта задача названа потому, что в предшествующих версиях Maple она нередко вела к «зависанию» компьютера.

8.10. Визуализация геометрических построений

8.10.1. Визуализация теоремы Пифагора

Средства Maple 9.5 весьма удобны для визуализации геометрических построений.

Примером наглядного геометрического представления математических понятий является визуализация известной теоремы Пифагора (рис. 8.62).

В этом примере используется функция построения многоугольников. Наглядность построений усиливается выбором разной цветовой окраски треугольников и квадрата.

Рис. 8.62. Графическая иллюстрация к теореме Пифагора

Поделиться:
Популярные книги

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Маяк надежды

Кас Маркус
5. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Маяк надежды

Великий перелом

Ланцов Михаил Алексеевич
2. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Великий перелом

Сопротивляйся мне

Вечная Ольга
3. Порочная власть
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Сопротивляйся мне

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6