Машина-двигательОт водяного колеса до атомного двигателя
Шрифт:
Итак, нам известно, как можно с помощью атомного котла получить тепло. Теперь познакомимся с тем, как это тепло можно превратить в механическую энергию. Посмотрите на схему установки с атомным двигателем. (Рисунок на стр. 192.)
Главную часть установки представляет собой уже знакомый нам атомный котел. Обратим внимание теперь не на внутреннее устройство этого котла, а на его связь с другими устройствами установки. От котла отходят две трубы. По нижней трубе с помощью специального насоса подается охлаждающая жидкость или газ. Проходя через котел, жидкость отбирает тепло и по верхней трубе попадает в другое очень важное устройство — теплообменник. Здесь горячая жидкость, проходя по змеевикам, отдает свое тепло воде, которая
Вода же, которой охладитель котла передал тепло в теплообменнике, нагревается до парообразования. Таким образом, теплообменник, в сущности, является паровым котлом, где вместо горячих топочных газов по трубам циркулирует жидкость (или газ), несущая тепло от атомного котла.
Остальная часть схемы ничем не отличается от схемы, по которой работает обычная паровая турбина: пар из теплообменника поступает в турбину, отдает свою энергию, заставляет турбину вращаться и приводить в движение электрогенератор. Отработавший пар поступает в конденсатор, где он конденсируется, превращаясь в воду, а вода насосом вновь подается в теплообменник. Быть может, у вас возникает вопрос: зачем нужен теплообменник, нельзя ли заставить турбину работать паром, образующимся из той воды, которая подается непосредственно в атомный котел? Но не следует забывать двух обстоятельств: во-первых, на охлаждение атомного котла можно подавать не только воду, но и газ и жидкий металл — и это оказывается целесообразным, так как позволяет отводить из котла теплоноситель при более высокой температуре и более низких давлениях; а во-вторых, что особенно важно, «атомная вода» в реакторе обогащается радиоактивными частичками, и ее ни в коем случае нельзя пускать в свободное путешествие по трубам установки. Обратите внимание, что на рисунке не только атомный котел, но и теплообменник, и насос, и трубы, по которым циркулирует «атомная жидкость», заключены в бетонную защитную коробку. К ним доступ человеку закрыт, потому что здоровье человека не должно подвергаться испытанию радиоактивностью. Зато вода внешней циркуляции, не соприкасаясь с атомным котлом и не смешиваясь с «атомной водой», может свободно проходить по всем наружным трубам, поступать в турбину.
Но нельзя ли, однако, и самое турбину и генератор — всё замуровать в бетонный склеп, одни лишь провода вывести наружу? Можно, конечно, и так поступить, но что, если какая-либо из машин выйдет из строя? Как тут ее отремонтируешь, когда все части стали радиоактивными? А ведь если атомный котел и теплообменник не имеют подвижных частей (стержни безопасности можно не принимать в расчет), то в машинах все рабочие части подвижны и, значит, подвержены износам, могут поломаться.
Вот и выходит, что наиболее удачной надо признать схему установки с теплообменником.
Познакомившись со схемой атомной энергетической установки, вы вправе, конечно, спросить: а где же, собственно, атомный двигатель?
И впрямь, двигателем на установке является уже известная нам паровая турбина.
Может быть осуществлена и другая установка, где в качестве двигателя использовалась бы также уже известная нам газовая турбина внешнего сгорания.
Действительно, если через теплообменник прогонять не воду, а газ, то, будучи нагретым до высоких температур, он приведет в движение газовую турбину, которая в нашей схеме займет место паровой турбины.
Паровая турбина… Газовая турбина… Но где всё-таки атомный двигатель?
Выходит, что атомного двигателя, как какой-то особой машины, нет.
Есть известные нам современные тепловые двигатели — турбины, работающие на атомном тепле. «Атомный двигатель» обычно и представляют себе как установку вроде той, что описана выше. Надо добавить: «атомный двигатель» может работать и по реактивному принципу — нагретый атомным теплом газ можно выбрасывать из сопла и двигать, например, самолет.
Но было бы не всё сказано об атомном двигателе, если бы здесь не нашлось места для упоминания еще об одном интересном способе использования атомной энергии. На сей раз речь пойдет не о тепловых двигателях. Правда, этот способ еще далек от практического применения и отнюдь не может конкурировать с известным нам уже способом получения тепловой энергии с помощью реакторов; тем не менее, в нем содержатся любопытные возможности.
Ведь на установках с реакторами атомная энергия проходит несколько превращений: сначала в тепловую, затем в механическую (турбины) и, наконец, в электрическую (электрогенератор). А нельзя ли прямо из атомной энергии получить электрическую энергию? Оказывается, можно.
Сейчас учеными разработаны и построены уже маленькие батарейки атомных электроэлементов. Они напоминают аккумуляторные батарейки вроде батареек от карманного фонаря. Устроены же они следующим образом. В маленькую баночку опущен стержень, изолированный от стенок баночки. На стержень надета втулочка из радиоактивного изотопа. Стержень в этом случае оказывается одним электродом, а стенки баночки — другим.
Электрический ток образуется потому, что радиоактивный изотоп всё время испускает -лучи, то есть поток электронов, который направлен к стенкам баночки. Если снаружи элемента цепь замкнута, например на лампочку, то непрерывное движение электронов по цепи (а электрический ток и есть упорядоченное движение электронов) зажжет эту лампочку.
Атомный электроэлемент.
Такие элементы пока еще маломощны, но целая батарея их уже может использоваться, скажем, в радиотехнике. Особое преимущество такой батареи в том, что она не требует перезарядки десятки лет.
Значит, не исключена возможность, что среди «атомных двигателей» будущего окажутся и не только тепловые, но и электрические энергоустановки, Однако эта перспектива еще далеко не ясна, в то время как установки с «атомными котлами» являются уже установками сегодняшнего дня. Ученые и инженеры всех стран разрабатывают такие установки для применения их на электростанциях, в мореплавании, авиации и транспорте.
О некоторых из таких применений, которые уже стали реальной технической задачей мы и поговорим.
Первая в мире
Посреди самого обычного леса, наполненного щебетанием птиц и шепотом листьев, стоит это белое, сверкающее в лучах солнца здание — здание, у входа в которое висит скромная дощечка с надписью: «Академия наук СССР. Атомная электростанция».
И, несмотря на то, что в царство пернатых вторглась техника, ничто не омрачает их беззаботную жизнь. Белое здание не дымит — воздух леса по-прежнему свеж. К белому зданию не тянутся линии железных дорог — паровозные гудки не тревожат лесных жителей. Возле белого здания нет угольных насыпей, нет холмов из гари и золы, — ветер не разносит черную пыль, не одевает нежную листву в траурный наряд. И всё потому, что в белом здании размещается не обычная тепловая электростанция, а электростанция, работающая на атомной энергии.
Дым? Но откуда же ему взяться? Ведь ядерное «горючее» «горит» без огня и дыма.
Железная дорога? Но даже если бы она была, то что, собственно, подвозить к атомной электростанции, если загрузка «атомного горючего» в котел производится только 3–4 раза в год, примерно через каждые 100 дней?
Каких-нибудь 100–200 килограммов урана, потребных к очередной загрузке для замены разрушившихся стержней, можно доставить не только на грузовике, но даже и на легковой автомашине. А ведь уголь пришлось бы непрерывно подвозить тоннами.