Чтение онлайн

на главную

Жанры

Машина-двигательОт водяного колеса до атомного двигателя
Шрифт:

Оказывается, именно в цепочке-то и состоит всё дело. Допустим, что в какой-то кусочек урана попал «снарядик» — нейтрон — и одно ядро разделилось. Но ведь при этом образовалось три новых «снарядика»! Что, если каждый из них попадет в новые ядра? Теперь уже разделятся сразу три ядра и при этом появятся девять новых «снарядиков». А эти девять, далее, в свою очередь, разделят девять новых ядер, откуда вылетят двадцать семь «снарядиков», и т. д. «Огневая мощь» атомной артиллерии будет всё возрастать и возрастать, как это показано на рисунке.

Такая реакция, которая охватывает

всё новые и новые соседние ядра и при этом развивается всё в более крупных масштабах, и названа «цепной ядерной реакцией».

Так происходит цепная реакция деления ядер урана.

Стоит попасть одному нейтрону, как неудержимая лавина нейтронов, всё нарастая и нарастая, разделит огромное количество ядер. Вот теперь разлетающиеся осколки, количество которых неисчислимо, вызовут выделение колоссального количества тепла.

Но не во всяком кусочке урана такая реакция возможна. В маленьком кусочке многие нейтроны могут, не встретив ядра на своем пути, вылететь за его пределы. И лишь в сравнительно больших кусках — куда бы нейтрон ни полетел, он всюду встретит новое ядро. Наименьшая масса, при которой возможна «цепная реакция», называется «критической массой».

Первая атомная бомба, сброшенная над Японией, состояла из двух кусков урана, которые вместе составляли «критическую массу» примерно в 1 килограмм. Для взрыва особым способом оба куска мгновенно сближались, и быстро развившаяся цепная реакция вызвала выделение тепловой энергии огромной мощности.

Но ведь, кроме сближения двух кусков урана, следовало их «поджечь», — выстрелить нейтроном?

Оказывается, даже и в этом нет необходимости. Советские физики Г. Н. Флеров и К. А. Петржак обнаружили, что ядра урана могут и сами, без всякого обстрела, делиться на осколки с высвобождением нейтронов. Значит, как только образовалась «критическая масса», нейтроны, вылетевшие из первого же разделившегося ядра, начинают цепную реакцию.

И вот в Хиросиме, ценою многих человеческих жизней, погибших по вине тех, кто решил применить атомную бомбу, человечество впервые убедилось в реальной возможности получения могучей энергии атома.

Но использовать в мирных целях тот же способ «критической массы» с мгновенным выделением колоссальной энергии, конечно, нельзя.

И следующим этапом развития научных работ явился этап изыскания путей выработки атомной энергии для мирных целей. Крупный вклад в разработку этих вопросов внесли ученые Советского Союза, представители новой, самой человечной, самой прогрессивной, социалистической науки.

Но, прежде чем перейти к рассказу о том, как удалось атомную энергию заставить приводить в движение станки и освещать дома, вернемся к Солнцу.

Выше было сказано, что солнечная энергия — энергия ядерная. Но неужто там, на Солнце, всё время происходят деления урановых ядер?

Нет, оказывается, атомную энергию можно выделить и не только делением ядер тяжелых элементов. Огромная энергия может быть получена и при слиянии ядер легких элементов. Правда, такой способ сложнее и его осуществить удалось лишь в дальнейшем, когда наука овладела способом деления урановых ядер.

Ведь как совершается химическая реакция окисления, которую мы обычно называем горением?

Вот, скажем, лежит полено дров. Сухое, березовое, а само не воспламеняется. Стоит, однако, поднести спичку и на одном небольшом участке нагреть полено, как древесина, получив со стороны, от спички, необходимое тепло, окажется в состоянии вступить в химическую реакцию с кислородом. А при такой реакции начнет выделяться еще большее количество тепла. Появится пламя, нагревающее соседний участок полена, — и горение начнется.

Нечто подобное может произойти и с ядрами легких элементов.

Если вначале их сильно нагреть, они начнут двигаться с большими скоростями, налетать друг на друга и при очень сильном сближении, когда ядерные связи вступят в действие, сливаться в новые ядра. Однако здесь теплом серной спички ничего не добьешься. Для таких реакций слияния требуется нагрев до миллионов градусов. Эти реакции получили название «термоядерных».

В настоящее время уже удалось произвести и термоядерные реакции, в результате которых при слиянии ядер, например тяжелого водорода, может быть выделена в тысячу раз большая энергия, чем при делении ядер урана.

«Спичкой» в такой реакции служит урановая бомба, при взрыве которой как раз и создается температура в несколько миллионов градусов.

В качестве ядер легких элементов для такой реакции сейчас применяют ядра тяжелого водорода. Эти ядра, в отличие от обычного водорода, кроме одного протона, содержат еще один нейтрон. Тяжелый водород получается из тяжелой воды, а тяжелая вода в небольшом количестве содержится в составе обычной воды.

Во время термоядерной реакции два ядра тяжелого водорода, слившись, образуют ядро гелия и выделяют при этом огромную энергию.

На термоядерной реакции основан принцип действия «водородной бомбы», которая содержит в себе известное количество тяжелого водорода и урановую бомбу, нужную как взрыватель.

Мощность «водородной» бомбы теоретически беспредельна. Здесь нет «критической массы», и, чем больше приготовлено тяжелого водорода, тем сильнее окажется действие бомбы. Кроме того, и сам выход энергии здесь больше: килограмм водорода, превращаясь таким путем в гелий, выделяет в несколько раз больше энергии, чем килограмм полностью разделившегося урана.

На Солнце, как установили ученые, как раз и происходит непрерывная термоядерная реакция с образованием газа «гелия», который свое наименование («солнечный») получил оттого, что он впервые в большом количестве был обнаружен в составе газов, окружающих Солнце. Солнце — своеобразная водородная бомба, но замедленного действия.

Для промышленных нужд наука еще не нашла способов использования термоядерных реакций. Еще не открыты возможности получения замедленных термоядерных процессов в земных условиях. Еще не научились создавать «искусственные солнца»…

Поделиться:
Популярные книги

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Измена. Истинная генерала драконов

Такер Эйси
1. Измены по-драконьи
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Истинная генерала драконов

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Ваше Сиятельство 7

Моури Эрли
7. Ваше Сиятельство
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Ваше Сиятельство 7

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3

Измена. Верну тебя, жена

Дали Мила
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верну тебя, жена

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2