Математические головоломки и развлечения
Шрифт:
Для тех, кто захочет сам изготовить флексагоны других типов, отличные от рассмотренных, мы приводим краткий обзор флексагонов низших порядков.
1. Унагексафлексагон. Полоску из трех треугольников разглаживают и концы ее соединяют так, чтобы получился лист Мёбиуса с треугольным краем (более изящная модель листа Мёбиуса с треугольным краем рассматривается в главе 7). Поскольку лист Мёбиуса имеет только одну сторону и состоит из шести треугольников, его можно назвать унагексафлексагоном, хотя, разумеется, у него нет шести сторон и он не складывается.
2. Дуогексафлексагон представляет собой просто шестиугольник, вырезанный из бумаги.
3. Тригексафлексагон. Существует только одна разновидность этого флексагона, именно она и была уже описана нами.
4. Тетрагексафлексагон также существует лишь в единственном варианте. Его складывают из пилообразной полоски, изображенной на рис. 7а.
5. Пентагексафлексагон. Единственную разновидность этого флексагона складывают из полоски, показанной на рис. 7б.
6. Гексагексафлексагон. Существует три различных типа этих флексагонов, каждый из них обладает неповторимыми свойствами. Мы дали описание лишь одного типа. Два остальных можно сделать из полосок, форма которых показана на рис. 7 в.
7. Гептагексафлексагон. Его складывают из трех полосок бумаги, изображенных на рис. 7 г.
Первую полоску можно сложить двумя различными способами, поэтому общее число возможных форм гептагексафлексагонов равно 4. Третью форму этих флексатонов конструируют из полоски бумаги, имеющей вид восьмерки с перекрывающимися частями. Это первая из фигур, которые Луи Таккерман назвал «флексагонными улицами». Поверхности этой фигуры можно перенумеровать так, что на «пути Таккермана» они будут встречаться «по порядку номеров», как дома на улице.
Рис. 7 Зигзагообразные полоски бумаги для складывания гексафлексагонов. Заштрихованные треугольники служат клапанами для склеивания.
Существует 12 различных типов октагексафлексагонов, 27 типов эннагексафлексагонов и 82 типа декагексафлексагонов. Точное число флексагонов каждого порядка определяется неоднозначно и зависит от того, что следует понимать под «различными» флексагонами. Например, все флексагоны имеют асимметричную структуру и делятся на правые и левые, но зеркально-симметричные формы флексагонов вряд ли следует считать самостоятельными. Более подробно о числе неэквивалентных флексагонов каждого порядка можно прочитать в статье Оукли и Визнера. [5]
5
'American Mathematical Monthly, 64, 1957, p. 143.
Порядки гексафлексагонов, которые можно сложить из прямых полосок, поделенных на равносторонние треугольники, всегда кратны трем. Особенно
При этом длина полоски сократится вдвое и станет равной длине гексагексафлексагонной полоски. Затем скрученную полоску нужно сложить точно таким образом, как если бы вы складывали гексагексафлексагон. В результате получится додекагексафлексагон.
Экспериментируя с флексагонами высоких порядков, полезно иметь в виду удобное правило: число слоев бумаги в двух соседних треугольных секциях всегда равно числу поверхностей данного флексагона. Интересно также отметить, что если каждую поверхность флексагона пометить каким-нибудь числом или символом и этот символ поставить на всех треугольниках, принадлежащих данной поверхности, то чередование символов на развернутой полоске будет обладать трехкратной периодичностью. Например, на лицевой и обратной сторонах развертки гексагексафлексагона, изображенного на рис. 2, цифры будут располагаться в такой последовательности:
Аналогичное разделение символов на три группы характерно для всех гексагексафлексагонов, но у флексагонов нечетного порядка символы в одной из трех групп расположены в обратном порядке по сравнению с двумя остальными группами.
Из многих сотен писем, полученных мной в связи со статьей о флексагонах, я считаю наиболее забавными два. В свое время они были опубликованы в Scientific American. Вот они.
Уважаемая редакция!
Меня прямо-таки потрясла статья «Флексагоны», опубликованная в декабрьском номере вашего журнала (за 1956 год).
Провозившись каких-нибудь шесть или семь часов, я с помощью сотрудников нашей лаборатории в конце концов сумел правильно склеить гексагексафлексагон. С тех пор вся наша лаборатория не перестает удивляться.
Сейчас мы встали перед проблемой. Как-то утром один из наших сотрудников, занимаясь от нечего делать складыванием гексагексафлексагона, не заметил, как кончик его галстука попал внутрь этой игрушки. При каждом последующем перегибании галстук несчастного все больше и больше втягивался внутрь флексагона. После шестого перегибания исчез сам сотрудник.
Разумеется, мы тут оке начали лихорадочно перегибать флексагон, но так и не обнаружили никаких следов нашего товарища, зато мы нашли шестнадцатую поверхность гексагексафлексагона.
Возникает вопрос: должна ли вдова исчезнувшего сотрудника получить компенсацию за все время его отсутствия или же мы можем с полным основанием сразу считать его умершим? Ждем вашего совета.
НЕЙЛ АПТЕГРОУВ
Лаборатории Аллена В. Дюмона
Клифтон, штат Нью-Джерси
Сэр!
Письмо об исчезновении внутри гексагексафлексагона сотрудника Лабораторий Аллена В. Дюмона, напечатанное в мартовском выпуске вашего журнала, помогло нам решить одну загадку.
Однажды, занимаясь на досуге складыванием гексагексафлексагона самой последней модели, мы заметили, что из него торчит кусочек какой-то пестрой материи. При последующих перегибаниях флексагона из него показался незнакомец, жующий резинку.