Математические модели в естественнонаучном образовании. Том II
Шрифт:
Конечно, амбулаторные ВИЧ-положительные больные были необязательно инфицированы стоматологом. Можно было бы ожидать, что в большой стоматологической практике будут некоторые инфицированные пациенты, чья инфекция не имеет ничего общего с их стоматологической помощью. Эпидемиологическое расследование попыталось оценить другие факторы риска для пациентов. Вероятно, в то время, как и для других заболевания, не зубные инфекции возникают в качестве сопутствующих. Однако из-за трудностей получения точных ответов от пациентов о поведении высокого риска результаты такого исследования нельзя считать окончательными.
Поскольку никаких других возможных случаев стоматологической инфекции
В 1992 году в Science появилась статья Оу. Эта работа использовала совершенно другой подход с использованием доказательств ДНК, чтобы попытаться установить вероятность пути стоматологической инфекции для пациентов. Поскольку ВИЧ так быстро мутирует в квазивиды, можно было бы ожидать, что люди, недавно инфицированные непосредственным контактом, имеют более похожие виды, чем те, чей общий источник инфекции был более удален. Поэтому исследователи решили секвенировать очень изменчивый ген оболочки ВИЧ у каждого пациента, стоматолога и некоторых других ВИЧ-инфицированных людей, живущих поблизости, которые, как ожидалось, не имели какого-либо тесного контакта с изучаемыми случаями (то есть с местным контролем). Затем они использовали последовательности для построения филогенетического дерева и по схеме кластеризации определили, какие пациенты, по их мнению, были инфицированы стоматологом.
Некоторые из последовательностей ДНК в упомянутой статье были загружены из GenBank для использования. В MATLAB запустите m-файл flhiv.m для чтения данных последовательностей. Это создаст последовательности с именами: dnt, lc1, lc5, ptb, ptc, ptd.
Эти образцы относятся к стоматологу, местному контролю 1, местному контролю 5, пациенту b, пациенту c и пациенту d в научной статье. Хотя эти последовательности уже выровнены, они имеют разную длину, поэтому придется найти самую короткую и отрезать концы других, чтобы сравнить их.
Постройте филогенетические деревья, используя эти последовательности, и сделайте выводы о том, какие пациенты, вероятно, были инфицированы стоматологом.
Рекомендации
Лучше всего попробовать несколько различных методов строительства дерева.
Принимая решение об использовании UPGMA или метода присоединения соседей (или, возможно того и другого), учитывайте предположения, которые делают эти методы.
При выборе формулы расстояния для использования убедитесь, что просматриваете данные, чтобы увидеть, какие модели кажутся наиболее подходящими. Если разные формы дают разные деревья, то в каком из них будете наиболее уверены? Почему?
Если используете метод, который производит некорневое дерево, где нужно разместить корень?
Прежде чем использовать метод максимальной экономии, вычислите, сколько различных деревьев необходимо было бы рассмотреть, если бы все они были исследованы.
Поскольку считать экономичность вручную для большого количества деревьев практически нецелесообразно, нужно использовать столько информативных видов, сколько сочтете приемлемым, и вычислить экономичность для небольшого числа различных деревьев. Одно из этих деревьев должно быть сохранено в файле Distancemethod, а остальные должны быть деревьями, которые, по вашему мнению, также могут быть хорошими кандидатами на эту роль.
Насколько уверены в достоверности полученных результатов и почему? Если отвергаете результаты проделанной работы по построению деревьев как недостаточно строго обоснованные с математической точки зрения, то почувствуете ли большую уверенность в достоверности, просто принимая на веру слова пациентов, заинтересованных в результатах исследования
Глава 6. Генетика
Всем известно, что потомство, как правило, имеет физические черты, общие с их родителями. У особей как правило прослеживается сходство в цвете волос, цвете глаз, росте и телосложении, в отдельных индивидуумах или в целом семействе. Эти селекционные черты, должно быть, были замечены в истории давным-давно, так как одомашненные животные и сельскохозяйственные культуры имеют сильно развитые черты, которые считаем полезными.
С другой стороны, черты потомства, как правило, не совсем предсказуемы при наблюдении за признаками родителей. У ребенка может быть черта, такая как гемофилия, которую ни один из родителей не проявляет, хотя такая черта может встречаться чаще в одной семье, чем в другой. Таким образом, несмотря на закономерности наследования, случайность также, по-видимому, вовлечена в процесс эволюции. Создание математической модели наследственности требует охвата таких аспектов.
Первый решительный шаг был сделан августинским монахом Грегором Менделем во второй половине девятнадцатого века. Экспериментируя с некоторыми тщательно отобранными признаками у гороха, он пришел к тому, что в качестве основной единицы наследственности предложил нечто принципиально новое для того времени, ныне называемое геном. Хотя для современного исследователя это может показаться удивительным, но в то время ген был совершенно абстрактным понятием, без предполагаемой физической основы, такой как последовательности ДНК, которые сейчас непосредственно представляем.
Признавая ценность количественного анализа, Мендель создал математическую модель передачи наследуемых признаков, основанную на понятиях вероятности. Его гений заключался как в выявлении достаточно простых признаков, чтобы иметь возможность сформулировать хорошую модель, так и в успешном моделировании наследования этих признаков. Хотя последующая работа добавила много новых возможностей классическим моделям, и теперь знаем гораздо больше о химических и биологических механизмах, лежащих в основе генетики, простая модель Менделя остается основным ядром понимания того, как организмы передают свои черты потомству.
6.1. Менделевская генетика
В 1865 году Мендель представил свои выводы из селекционных экспериментов с садовым горохом, опубликовав результаты в 1866 небольшой группе ученых в городе Брюн, на территории современной Чехии. Хотя мировое научное сообщество в основном не замечало этого до начала века, генетическая теория Менделя была большим достижением. Давайте внимательно рассмотрим некоторые из его экспериментов, чтобы понять, как модель описывает то, что он наблюдал.
Мендель выделил для изучения семь характеристик растений гороха: длину стебля, форму семян, цвет семян, цвет цветка, форму стручка, цвет стручка и положение цветка. Каждая из этих характеристик появилась в горохе в одной из двух форм, которые назовем чертами. Например, длина стебля может быть высокой или карликовой, в то время как форма семени может быть круглой или морщинистой. Путем селекционного разведения он затем разработал истинно селекционные линии гороха для этих признаков – штаммы растений гороха, которые производили потомство, все из которых были идентичны родителям. Таким образом, все потомки правильно размножающейся линии для высоких растений будут высокими, а все потомки размножающейся карликовой линии будут карликами.
Конец ознакомительного фрагмента.