Математические модели в естественнонаучном образовании. Том II
Шрифт:
5.4.5. Для первого дерева на рисунке 5.23 рассчитайте минимальное количество требуемых изменений базы, разметив внутренние вершины по алгоритму из предыдущего раздела. Затем покажите, что второе дерево требует точно такого же количества изменений основания, даже если это не согласуется с тем, как обозначили внутренние вершины на первом дереве. Основной вывод, к которому нужно прийти после решения этой задачи заключается в том, что алгоритм, который используется для подсчета минимального количества изменений базы, необходимых для дерева, не обязательно покажет все способы, которыми можно достигнуть минимума.
Рисунок 5.23.
5.4.6. Если приведены последовательности для 3 терминальных таксонов, то информативных сайтов быть не может. Объясните, почему это так, и почему это не имеет значения.
5.4.7. Основания на определенном участке в выровненных последовательностях из разных таксонов образуют закономерность. Например, при сравнении
а. Объясните, почему при сравнении последовательностей для
б. Некоторые шаблоны неинформативны. Простыми примерами являются четыре паттерна, показывающие одно и то же основание во всех последовательностях. Объясните, почему существуют
в. Сколько всего существует неинформативных шаблонов, в которых 2 основания появляются один раз, а все остальные совпадают?
г. Сколько существует неинформативных шаблонов, в которых 3 основания появляется один раз, а все остальные согласованы?
д. Объедините свои ответы, чтобы рассчитать количество информативных шаблонов для
5.4.8. Компьютерная программа, вычисляющая оценки экономии, может работать следующим образом: сначала сравните последовательности и подсчитайте количество сайтов
5.4.9. Показатели экономичности можно рассчитать еще эффективнее, используя тот факт, что несколько разных шаблонов всегда дают одинаковую оценку. Например, при сопоставлении 4 таксонов шаблоны (ATTA) и (CAAC) будут иметь одинаковую оценку.
а. Используя это наблюдение для 4 таксонов определите, сколько различных информативных таблиц должно быть рассмотрено, чтобы получить оценку экономии для всех возможных комбинаций?
б. Повторите часть (а) для 5 таксонов.
5.4.10. Используйте метод максимальной экономии для построения некорневого дерева для моделируемых последовательностей a1, a2, a3
а. Каков процент информативных сайтов?
б. Сколько различных деревьев следует проанализировать, чтобы найти самое экономное, относящееся к четырем таксонам?
в. Бывает слишком сложно использовать все информативные сайты для ручного расчета. Если это так, то используйте хотя бы первые 10 информативных сайтов, чтобы выбрать самое экономное дерево.
г. Согласуется ли найденное дерево топологически с тем, которое получается методом UPGMA и/или методом присоединения соседей с использованием расстояния Джукса-Кантора?
5.4.11. В этой задаче попытайтесь использовать метод максимальной экономии для построения некорневого дерева для ранее смоделированных последовательностей d1, d2, d3, d4, d5 и d6 в файле данных seqdata.mat. Начните с поиска информативных сайтов, как в предыдущей задаче.
а. Каков процент информативных сайтов?
б. Вычислите количество некорневых деревьев, которые необходимо изучить, если рассматривать все комбинации.
в. Используйте метод присоединения соседей, с логарифмическим расстоянием, вычисляемым из полных последовательностей, чтобы получить дерево, которое является хорошей отправной точкой для поиска наиболее экономных. Рассчитайте его оценку экономии, используя только первые 10 информативных сайтов.
г. Опять же, используя только первые 10 информативных сайтов, найдите по крайней мере 4 других дерева, которые похожи на одно из части (в). Можно ли найти более экономные?
д. Насколько уверены в том, что самое экономное дерево, которое нашли, действительно является самым экономным из всех возможных комбинаций? Для какого процента возможных деревьев вычислили оценки экономии? Какой процент информативных сайтов использовали?
5.5. Другие методы
На самом деле существует много других подходов к построению филогенетического дерева. Список предлагаемых методов довольно длинный и с каждым годом становится все длиннее, так как исследователи продолжают развивать данную проблематику.
В дополнение к дистанционным методам и методу максимальной экономии существует третий основной класс подходов, называемых методами максимального правдоподобия. Идея метода максимального правдоподобия состоит в том, что сначала предстоит выбрать конкретную модель молекулярной эволюции, например, модель Джукса-Кантора, 2- или 3-параметрическую модель Кимуры или более сложную. Затем нужно рассмотреть конкретное дерево, которое является кандидатом для описания связи данных таксонов. Предполагая, что эволюционная модель и конкретное дерево верны, можно рассчитать вероятность того, что последовательность ДНК могла быть получена именно на этих исходных данных. Вычисляется вероятность дерева, охватывающего имеющиеся данные. Повторяем этот процесс на всех остальных деревьях, получая значение вероятности для каждого. Затем выбираем дерево, к которого получилась наибольшая вероятность, поскольку именно такое дерево, как оказалось, лучше всего соответствует имеющимся данным.
Для многих исследователей методы максимального правдоподобия, которые следуют давней традиции в математической статистике, дают наибольшую надежду на то, что построенное дерево получилось хорошим. Однако можно столкнуться с рядом проблем. Во-первых, вычисляемые вероятности зависят от выбора конкретной модели эволюции, и если эта модель плохо описывает реальный процесс, то можно поставить под сомнение достоверность результатов. Во-вторых, как и в случае с экономностью, метод требует рассмотрения всех возможных деревьев, а значит, больших вычислительных затрат. Для каждой рассматриваемой топологии дерева требуется громоздкий расчет, чтобы найти оптимальные параметры модели, согласующиеся с данными. Если количество таксонов велико, то невозможно перебрать все возможные деревья, оптимизируя параметры модели для каждого, поэтому на практике используются эвристические методы сокращения числа свободных переменных. Хотя с практической точки зрения кажется, что данные методы работают хорошо, максимизация вероятности требует гораздо больше вычислительных ресурсов, чем другие подходы.