Математика для любознательных
Шрифт:
Волос, увеличенный по толщине в биллион раз, был бы раз в 8 шире земного шара, а муха при таком увеличении была бы в 70 раз толще Солнца!
Взаимоотношение между миллионом, биллионом и триллионом можно с некоторою наглядностью представить следующим образом. В Ленинграде еще недавно было миллион жителей. Вообразите же себе длинный прямой ряд городов, таких как Ленинград, - целый миллион их; в этой цепи столиц, тянущихся на семь миллионов километров (в 20 раз дальше Луны) будет насчитываться биллион жителей… Теперь вообразите, что перед вами не один такой ряд городов, а целый миллион рядов, т. е. квадрат, каждая сторона которого состоит из миллиона Ленинградов и который внутри сплошь уставлен Ленинградами: в этом квадрате будет триллион жителей.
Одним триллионом кирпичей можно было бы, размещая их плотным слоем по твердой поверхности
Если бы все видимые в сильнейшие телескопы звезды обоих небесных полушарий, т. е. не менее 500 миллионов звезд - были обитаемы и населены каждая, как наша Земля, то на всех этих звездах, вместе взятых, насчитывался бы только один триллион людей.
Последнюю иллюстрацию мы заимствуем из мира мельчайших частиц, составляющих все тела природы - из мира молекул. Молекула по ширине меньше точки типографского шрифта этой книги примерно в миллион раз. Вообразите же триллион таких молекул [89] , нанизанных вплотную на одну нитку. Какой длины была бы эта нить? Ею можно было бы семь раз обмотать земной шар по экватору!
89
В каждом кубич. сантиметре воздуха (т. е. примерно в наперстке) насчитывается - отметим кстати - от 20 до 30 триллионов молекул. Как велико это число, видно, между прочим, из того, что достигнув с помощью совершеннейших воздушных насосов самой крайней степени разрежения - в сто миллиардов раз, - мы все-таки будем еще иметь в каждом куб. сантиметре до 270 миллионов молекул! Не знаешь, чему изумляться больше: огромной численности молекул или их невообразимой малости…
Квадрильон
В старинной (XVIII в.) «Арифметике» Магницкого, о которой мы не раз уже упоминали, приводится таблица названий классов чисел, доведенная до квадрильона, т. е. единицы с 24 нулями [90] .
Это было большим шагом вперед по сравнению с более древним числовым инвентарем наших предков. Древняя славянская лестница больших чисел была до XV века гораздо скромнее и достигала только до ста миллионов. Вот эта старинная нумерация:
90
Магницкий придерживался той классификации чисел, которая дает каждое новое наименование миллиону низших единиц (биллион - миллион миллионов, и т. д.). Такая система наименований больших чисел принята была и в более поздних русских школьных руководствах (насколько я могу судить по имеющимся у меня русским учебникам конца XVIII и начала XIX века). И лишь сравнительно недавно получила у нас распространение нынешняя, «обиходная» система наименования.
Магницкий широко раздвинул древние пределы больших чисел в своей табличке. Но он считал практически бесполезным доводить систему наименований числовых великанов чересчур далеко. Вслед за его таблицей он помещает такие стихи:
Числ есть бесконечно,
умом нам недотечно,
И никто знает конца,
кроме всех бога творца.
Несть бо нам определьно
тем же есть и безцельно
Множайших чисел искати
и больше сей писати
Превосходной таблицы
умов наших границы
И аще кому треба
счисляти что внутрь неба
Довлеет числа сего
к вещем всем мира сего.
Наш старинный математик хотел сказать этими стихами, что так как ум человеческий не может обнять бесконечного ряда чисел, то бесцельно составлять числа больше тех, которые представлены в его таблице, «умов наших границе». Заключающиеся в ней числа (от 1-цы до квадрильонов включительно) достаточны для исчисления всех вещей видимого мира, - достаточны для тех, «кому треба счисляти что внутрь неба».
Любопытно отметить, что Магницкий оказался в данном случае почти прозорливцем. По крайней мере, до самого последнего времени наука не ощущала еще нужды в числах высшего наименования, чем квадрильоны. Расстояния самых отдаленных звездных скоплений, по новейшим оценкам астрономов исчисляемые в сотни тысяч «цветовых лет» [91] , в переводе на километры выражаются триллионами. Это - доступные сильнейшим телескопам видимые границы вселенной. Расстояние всех других звезд, расположенных «внутри неба», выражаются, конечно, меньшими числами. Общее чис - л о звезд исчисляется «всего лишь» сотнями миллионов. Древность старейших из них не превышает, по самой щедрой оценке, биллиона лет. Массы звезд исчисляются тысячами квадрильонов тонн.
91
Световой год - путь, проходимый лучом света в 1 год (свет пробегает в секунду 300000 км); он равен примерно 9 1/2 биллионам км.
Обращаясь в другую сторону, к миру весьма малых величин, мы и здесь не ощущаем пока надобности пользоваться числами свыше квадрильонов. Число молекул в кубическом сантиметре газа - одно из самых больших множеств, реально исчисленных, - выражается десятками триллионов. Число колебаний в секунду для самых быстроколеблющихся волн лучистой энергии (лучей Гесса) не превышает 40 триллионов. Если бы мы вздумали подсчитать, сколько капель в океане (считая даже объем капли 1 куб. миллиметр, - что весьма немного), нам и тогда не пришлось бы обратиться к наименованиям выше квадрильона, потому что число это исчисляется только тысячами квадрильонов.
И лишь при желании выразить числом, сколько граммов вещества заключает вся наша солнечная система, понадобились бы наименования выше квадрильона, потому что в числе этом 34 цифры (2 и 33 нуля): это - две тысячи квинтильонов.
Если вам интересно, каковы наименования сверх-исполинов, следующих за квадрильоном, вы найдете их в приводимой здесь табличке:
Далее наименований не имеется. Но и эти, в сущности, почти не употребляются, да и мало кому известны. Как велики выражаемые ими числа, видно хотя бы из того, что число граммов вещества во вселенной (по современным воззрениям) «всего» 10 нональонов.
Кубическая миля и кубический километр
В заключение остановимся на арифметическом (вернее, пожалуй, геометрическом) великане особого рода - на кубической миле: мы имеем в виду географическую милю - составляющую 15-ю долю экваториального градуса и заключающую 7420 метров. С кубическими мерами наше воображение справляется довольно слабо; мы обычно значительно преуменьшаем их величину - особенно для крупных кубических единиц, с которыми приходится иметь дело в астрономии. Но если мы превратно представляем себе уже кубическую милю - самую большую из наших объемных мер, - то как ошибочны должны быть наши представления об объеме земного шара, других планет, солнца? Стоит поэтому уделить немного времени и внимания, чтобы постараться приобрести о кубической миле более соответствующее представление.
В дальнейшем воспользуемся картинным изложением талантливого германского популяризатора А. Бернштейна, приведя (в несколько измененном виде) длинную выписку из его полузабытой книжечки - «Фантастическое путешествие через вселенную» (появившейся более полувека тому назад).
«Положим, что по прямому шоссе мы можем видеть на целую милю (7 1/2 км) вперед. Сделаем мачту длиною в милю и поставим ее на одном конце дороги, у верстового столба. Теперь взглянем вверх и посмотрим, как высока наша мачта. Положим, что возле этой мачты стоит одинаковый с ней высоты человеческая статуя - статуя более семи километров высоты. В такой статуе колено будет находиться на высоте 1800 метров; нужно было бы взгромоздить одну на другую 25 египетских пирамид, чтобы достигнуть до поясницы статуи!