Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:
Дымлением называется процесс образования разбавляемого воздухом объема мельчайших аэрозольных частиц в результате химических реакций неполного сгорания вещества выброса. Происходит дымление, как правило, при недостатке окислителя.
Процесс дымления на практике либо предшествует горению, либо следует после него. Выброс дымления, как и испарительный выброс, имеет нулевую начальную скорость выхода вещества и отличный от нуля начальный расход вещества.
При дымлении наряду с аэрозольными частицами, как правило, присутствуют жидкости в парообразном состоянии. Недоокисление топлива при дымлении дает химические соединения, обладающие высокой токсичностью (например, диоксин). Поэтому дымление, несмотря на его сравнительно малый вклад по времени в общий процесс горения, может дать высокие значения концентраций и доз загрязняющих и токсичных веществ в окрестности места возникновения
Пылевые частицы, определяемые как дисперсные аэрозоли [63,64], в основной своей массе имеют большие размеры. Многие процессы в промышленности, например, размол, дробление, просеивание, измельчение, шлифовка сопровождаются выделением в воздух пылевых частиц. Они также часто образуются при химических или термических процессах плавления твердых веществ, возгонке, обжиге.
Частицы пыли, находясь в воздухе рабочих помещений во взвешенном состоянии, могут попасть в организм через органы дыхания, желудочно-кишечный тракт. Они, попадая на слизистые оболочки глаз, могут вызвать конъюктивиты, заболевания кожи — различные дерматиты.
Вредное действие пыли на организм определяется ее химическим составом, размером частиц и их формой. Наибольшую опасность представляют мелкие частицы пыли размером до 5 микрон [63]. Такие частицы могут долго находиться во взвешенном состоянии и проникать глубоко в легкие. Вредное действие пыли зависит также от формы ее частиц. Наиболее вредными являются микродисперсные частицы пыли волокнистого или иглообразного строения, способные длительное время находиться в воздухе во взвешенном состоянии. Такие пылевые частицы, выделяющиеся в текстильной, асбестовой промышленности и в производствах стеклянного и минерального волокна, могут проникать глубоко в ткани легкого даже при размерах пылинок в 20–30 мкм.
Установлено, что наиболее вредными для здоровья людей являются пыли с размером пылинок от 2 до 8 микрон. Одной из особенностей пыли является чрезвычайно развитая поверхность, зависящая от величины частиц, что делает пыль значительно химически активнее, чем было твердое вещество до измельчения. Если пыль состоит из веществ, способных к окислению, то по своим свойствам воздушнопылевая смесь часто становится похожей на смесь воздуха с горючими парами, и в ряде случаев такие пылевоздушные смеси оказываются взрывоопасными. Известны случаи взрывов пыли алюминия, магния, цинка, сажи, угля, дерева, хлопка, смол и других легко окисляемых веществ. В пыли обитают плесневые грибки, микробы и пылевые клещи, являющиеся аллергенами. Остатки бытовых химикатов и металлы (в том числе такие токсичные, как свинец, кадмий, мышьяк) легко вступают в контакт с частицами и сохраняются в пыли годами.
Крупномасштабные запыления и задымления приземных слоев атмосферы могут возникать либо от местных антропогенных источников, либо доставляться воздушными потоками. Недостаточно изученной проблемой является жизненный цикл дыма в атмосфере, особенно при все возрастающих масштабах его выбросов. В начале XXI века суммарный по земному шару ввод дыма за год оценивается -200 Мт, что близко к оценкам дыма от пожаров ядерной войны. Основными источниками «мирного» дыма являются сжигания ископаемого топлива (нефть, уголь, газ), природные и антропогенные пожары. Эти дымы и условия их поступления в атмосферу отличаются от «военных» дымов рядом факторов, главным из которых является низкая интенсивность горения. В результате таких процессов большая часть дыма собирается в приземном и пограничном слоях атмосферы, т. е. в нижнем слое высотой — 1 км. Отсюда частицы дыма сравнительно быстро удаляются осадками — дождем и снегом. Благодаря тому, что ввод дыма осуществляется в разных местах и более или менее равномерно в течение года, он нигде не накапливается в количествах, которые могут заметно повлиять на термический режим атмосферы и на ее загрязненность. К тому же содержание токсичных соединений углерода в частицах дыма невелико, так как большая часть дыма образуется при сжигании древесины и других видов топлива в контролируемых условиях. Среднее по всей атмосфере время жизни частиц дыма около 10 дней. Одновременно в атмосфере находится всего примерно 5 Мт дыма, поэтому он слабо влияет на поглощение солнечного излучения и климат как отдельных регионов, так и глобально всей планеты. Однако есть все основания считать, что время жизни частиц дыма может заметно возрасти после введения больших количеств «военного» дыма. При ведении крупномасштабных боевых действий в военном конфликте с использованием современного оружия война продолжалась бы лишь несколько дней. На основе исторического опыта предполагается,
Местными источниками пыли и дыма, как правило, служат площади оголенных грунтов, карьеры горных выработок, заводы, выпускающие некоторые строительные материалы (например, цементные), металлургические производства. При авариях на них в атмосферу поступает неконтролируемое количество таких загрязнений.
Наибольшую опасность представляют задымления и запыления, привнесенные в данное место извне, так как подобное вторжение является часто совершенно неожиданным. В литературных источниках имеются сообщения о таких случаях.
Например, 19 декабря 1985 г. в Ашхабаде наблюдалась [25] пыльная мгла при нулевой видимости. В это же время такое же явление наблюдалось во многих других районах Средней Азии, удаленных друг от друга на многие сотни километров (в Чарджоуской области, городах Кушка, Сарахс и ряде других). Мгла охватила территорию размерами 250 на 600 км в направлении с юго-запада на северо-восток. Используя данные спутников и аэросиноптические карты Северного полушария, удалось установить, что в указанные районы Средней Азии были воздушными массами перенесены огромные количества пыли с Аравийского полуострова.
Предполагается, что пыль поднялась в воздух ветром, затем струйными тропосферными потоками была перенесена на тысячи км, и благодаря нисходящим воздушным потокам на северо-восточных склонах среднеазиатских гор опустилась в приземные слои атмосферы.
Аналогичная ситуация наблюдалась 8 мая 1987 г. в Якутии. Там отмечалось помутнение воздуха типа дымки и выпадение снега со специфическим запахом. Измерения показали наличие небольших концентраций фосфорорганических отравляющих веществ, которые могли быть доставлены из Ирака и восточной Турции [25]. Этот источник загрязнений был установлен после анализа спутниковой информации и данных аэросиноптических материалов.
Подобные явления задымления с последующим выпадением «грязного» снега отмечались в некоторых пунктах Магаданской области. Территория, захваченная загрязнением, имела протяженность с запада на восток на 600 км и на 150 км с севера на юг. Местные источники подобных загрязнений отсутствуют. Анализ погодных условий показал, что наиболее вероятной причиной такого задымления явился перенос продуктов сгорания древесины при лесных пожарах из Читинской области, а также погодные условия, обусловившие подъем и транспортировку загрязняющих частиц на огромные расстояния.
Подобный региональный, а иногда и глобальный перенос токсичных пылевых и дымовых частиц возможен при авариях промышленных объектов.
Глава III
Турбулентные выбросы в атмосфере
Расчет турбулентных струйных течений, к которым можно отнести собственно струи, следы, термики и клубы, базируется на некоторых схемах процессов турбулентного обмена и на связях между касательными напряжениями и поперечным градиентом осредненной скорости. В простейших случаях полуэмпирические теории турбулентности Прандтля, Тейлора и др. позволяют свести задачу интегрирования системы дифференциальных уравнений движения — уравнений в частных производных — к интегрированию обыкновенного дифференциального уравнения; причем его решение получается с точностью до экспериментально определяемого множителя. Такие решения, называемые автомодельными, были впервые получены Толлмином, и они явились отправным моментом многочисленных полуэмпирических схем теории турбулентных струйных течений.