Чтение онлайн

на главную

Жанры

Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:

Окончательное выражение для безразмерной продольной координаты сопряжения конической и сферической частей выброса может быть получено при подстановке в соотношение (3.24) вместо р и q их значений. Из-за громоздкости мы его не приводим.

Если известен радиус полусферической «шапки» выброса R, то выражение для продольной координаты сопряжения может быть записано в виде компактного соотношения. Приравниваем объем цилиндрической части выброса

и его сферической части

Получаем:

Из

рассмотрения Рис. 3.4 видно, что по мере развития выброса координата его центра масс перемещается с полусферической его части на цилиндрическую часть. В математическом виде это утверждение может быть записано так:

В этих соотношения, как и ранее:

ух=кх — уравнение цилиндрической образующей конуса;

 — уравнение образующей сферической части поверхности выброса.

После вычисления интегралов имеем следующие соотношения для определения координаты х*:

При х* >= хс:

v1 + v2 = v3 (3.25)

где

Уравнение (3.25) при учете вида соотношений (3.26), (3.27), (3.28) записывается в виде кубического уравнения

В каноническом виде относительно переменной

Это уравнение при учете связи характеристик выброса R и L может быть решено аналитически или численно.

Уравнение (3.29) при учете соотношений (3.30), (3.31), (3.32) записывается так:

Откуда

или при учете соотношения

получаем для х* окончательное выражение (случай х*с):

Поперечный размер выброса в месте нахождения его центра масс R„может быть определен при использовании геометрических построений Рис. 3.4.

Здесь, как и ранее, радиус полусферической «шапки» выброса определяется соотношением:

При

большом времени истечения вещества из сопла кратковременный выброс перестраивается в струйный. Для струйного выброса значением начального радиуса R0 можно пренебречь по сравнением с его приращением, т. е.

При этом

и из соотношения (3.29) при учете (3.30), (3.31) и (3.32) получаем асимптотические зависимости для координат центра масс выброса

График зависимости безразмерной координаты центра масс струйного выброса 

от коэффициента углового расширения его конической части к представлен на рисунке 3.5.

Как следует из графика этого рисунка увеличение угловой координаты его центра масс приводит к линейному уменьшению 

. Однако, эта зависимость сравнительно слабая. В диапазоне возможных состояний атмосферы, характеризующихся диапазоном коэффициентов углового расширения 0,087 <= к <= 0,364 (классы устойчивости атмосферы от В до Е по классификации Пасквилла) безразмерное значение продольной координаты изменяется от

Рис. 3.5. Зависимость безразмерной продольной координаты струйного выброса продуктов горения из сопла от углового коэффициента расширения струи к.

Найдем теперь выражение для поверхностей вовлечения формирующихся кратковременных выбросов. Считаем, что выходящий из сопла газ механически выдавливает окружающий воздух вплоть до полусферического объема (это состояние вещества выброса соответствует временной координате t3 на Рис. 3.4а). Вовлечение в выброс начинает происходить при t > t3 через образующуюся коническую его поверхность.

Площадь вовлечения окружающей среды при этом запишется так:

SB = (R + R0) x L.обр

где

 длина образующей конической поверхности,

 — угол конической поверхности выброса.

Учитывая связь угла а и коэффициента углового расширения потока к:

к = tg

находим для образующей следующее Lобр выражение:

Подставляя в выражение для площади вовлечения вместо Lобр его выражение, получаем:

При учете формулы для радиуса R получаем окончательное выражение для поверхности вовлечения кратковременного выброса. Оно имеет вид:

На графике Рис. 3.6 представлена зависимость безразмерной (отнесенной к площади соплового сечения) поверхность вовлечения кратковременного выброса от безразмерной длины выброса для различных значений углового расширения к:

Поделиться:
Популярные книги

Последний Паладин. Том 3

Саваровский Роман
3. Путь Паладина
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 3

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Курсант: Назад в СССР 13

Дамиров Рафаэль
13. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 13

Газлайтер. Том 6

Володин Григорий
6. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 6

Купидон с топором

Юнина Наталья
Любовные романы:
современные любовные романы
7.67
рейтинг книги
Купидон с топором

Виконт. Книга 3. Знамена Легиона

Юллем Евгений
3. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Виконт. Книга 3. Знамена Легиона

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5