Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:
Рисунок 5.3. иллюстрирует баланс загрязнений внутри здания от различных источников в условиях городской застройки. Как следует из этого рисунка суммарное загрязнение в помещении складывается от действия высоких (заводские трубы, котельные, градирни и т. п.) источников, низких (в первую очередь автотранспорт), фоновых и внутренних выбросов. Числовые загрязнения суммарных концентраций загрязняющих веществ в каждой конкретной части здания определяются как суперпозиция концентраций от указанных источников. Причем несмотря на различный вклад этих источников в суммарную концентрацию загрязнений внутри здания можно отметить возрастающий
Рис. 5.3. Характер рассеивания в атмосфере и высотные распределения концентраций загрязняющих веществ в городе: 1 — фон; 2 — от низких источников; 3 — от инфраструктуры; 4 — от высоких источников; 5 — суммарное значение; 6 — ветер.
Такой же характер распределения ядовитых веществ наблюдается и в наружном воздухе (при условии, что дом находится на достаточном удалении от постоянно действующего высокого источника загрязнений).
Подводя итог проведенному выше сравнению, можно сделать вывод, что наибольшему риску токсического воздействия подвергаются жители нижних этажей домов, на улицах — дети и домашние животные.
Заключение
Опасные технологии — в первую очередь ядерные, химические и ракетнокосмические — широко представлены в народнохозяйственном комплексе нашей страны. По данным МЧС в начале XXI века на территории России функционировало около 45 тыс. различных потенциально опасных объектов, свыше 3,5 тыс. объектов располагали значительными запасами хлора и аммиака, более 500 тыс. тонн хлора ежегодно перевозилось по железным дорогам. Эти объекты являются потенциально опасными для природных сред, в первую очередь для атмосферы.
Износ технологического оборудования в химическом комплексе составлял более 80 %, около половины магистральных трубопроводов эксплуатировалось более 20 лет, ремонт и замена изношенного оборудования намного отставали от потребностей. Около 200 водохранилищ, в их числе ряд особо крупных, эксплуатировались более 50 лет без требуемых реконструкции и ремонта. С каждым годом техногенная обстановка усложняется.
В сегодняшних условиях не исключается возможность террористических актов на потенциально опасных объектах и в местах массового скопления людей Ожидаемый максимальный совокупный материальный ущерб от чрезвычайных ситуаций различного характера может составлять заметную долю от национального дохода страны.
Ярким примером этого является авария на Чернобыльской АЭС. Только на преодоление последствий этого суперинцидента в конце XX века ежегодно затрачивалось около 20 % бюджета Белоруссии, до 12 % —
Украины, около 1 % — России. Расходы на ликвидацию последствий аварий и катастроф в России оказываются сравнимыми с затратами на некоторые статьи государственного бюджета. Крупные аварии на современных промышленных предприятиях и энергоемких объектах поражают своими негативными последствиями: материальными, социальными и экологическими.
Тем не менее при соответствующих мерах по прогнозированию и предупреждению чрезвычайных ситуаций, при своевременном принятии мер защиты последствия этих аварий могут быть локализованы, а в ряде случаев сведены к минимуму. Эти задачи лучше выполняются там, где налажено тесное сотрудничество органов власти, научных институтов, а также сил МЧС и населения.
Безусловно, многие катастрофы, стихийные бедствия и аварии имеют фатальный непредсказуемый характер — их невозможно предвидеть и предотвратить. Борьба за уменьшение ущербов и потерь от них должна быть важным элементов государственной политики страны, в основу которой положено прогнозирование предстоящего бедствия и своевременное оповещение людей о нем.
Отметим, что в настоящее время накоплено значительное количество лабораторных и экспериментальных данных о физических процессах, сопровождающих взрывы, пожары и токсические выбросы. Имеются также многочисленные математические модели этих процессов. Тем не менее многие важные данные, влияющие на процесс возникновения, развития и движения выбросов в реальной атмосфере изучены недостаточно. Слабо изучены экологические последствия происшествий, действие спасателей в различных аварийных ситуациях, рекультивация территорий и вопросы послеаварийного возвращения населения в районы бедствия.
Что касается аварий с выбросом токсикантов в атмосферу, то для активной борьбы с подобными инцидентами необходимо продолжить изучение:
— процессов развития крупномасштабных пожаров, взрывов и выбросов токсических веществ на открытой местности и в условиях городской застройки;
— влияния наличия горючих веществ, их доли в массе аварийного объекта и метеоусловий на характеристики возникновения и распространения аварийных выбросов;
— эффектов взаимодействия нескольких близких друг к другу очагов аварии на общую картину развития ситуации.
Ясно, что для получения недостающей информации и лучшего понимания происходящих при авариях процессов необходимы дополнительные экспериментальные данные, их анализ и широкое научное обсуждение, а также усовершенствование существующих математических моделей.
Представленная в настоящее время в литературных источниках информация о классификации аварий и их типизация по характеру возникающих источников загрязнения окружающей среды является запутанной, а иногда и противоречивой. Это объясняется отсутствием единой терминологии описания подобных ситуаций, а также неопределенностью в выборе исследователями определяющих параметров рассматриваемого физического процесса.
Существенным достижением в решении этой проблемы, на наш взгляд, является развитый в нашей книге подход к построению математических моделей аварийных выбросов, основывающийся на фазовом состоянии вещества. Он позволяет с единых позиций рассматривать широкий класс твердофазных и парогазовых атмосферных выбросов, используя для их описания универсальные системы уравнений.
Несмотря на то, что выбросы токсичных и загрязняющих веществ в крупных авариях и их свойства чрезвычайно важны, они при использовании своевременных математических моделей оцениваются весьма неточно. Это связано, в первую очередь, с некорректностью постановок задач, необоснованностью основанных предложений, а также с неполнотой знаний метеорологической обстановки при аварии и с невозможностью переноса данных моделирования аварий малого и среднего масштабов на крупномасштабные реальные происшествия.