Чтение онлайн

на главную - закладки

Жанры

Математика. Утрата определенности.
Шрифт:

Но и когда все это было установлено, математика по-прежнему оставалась эффективным средством описания природы. Кроме того, математика сохранила привлекательность и сама по себе как область чистого знания, и в умах многих, особенно пифагорейцев, являлась частью реальности, представляющей самостоятельный интерес. {6} Учитывая это, математики решили восполнить пробелы в логическом каркасе своей науки и перестроить заново те части ее, в которых обнаружились изъяны. Движение за математическую строгость приобрело широкий размах во второй половине XIX в.

6

Относящийся к нашему времени выразительный пример подобного отношения

к математике приводит в своей статье «Эйнштейн и физика второй половины XX века» [60] выдающийся современный физик, лауреат Нобелевской премии Ч. Янг (Ян Чжэиьнин). Он рассказывает, как, придя к своему старому учителю Чжень Шеншеню, ныне профессору Калифорнийского университета в Беркли и одному из крупнейших современных геометров, он выразил удивление тем, как быстро понадобились физикам идущие в значительной степени от Чженя так называемые связности на расслоениях,придуманные математиками вне всякой связи с физической реальностью. На это Чжень ответил ему: «Но ведь никак нельзя сказать, что это мы, математики, выдумали связности на расслоениях — ясно, что они существовали и до нас».

К началу XX в. математики стали склоняться к мнению, что желанная цель наконец достигнута. И хотя им пришлось признать, что математика дает лишь приближенное описание природы и многие утратили веру в то, что природа полностью основана на математических принципах, математики по-прежнему продолжали возлагать большие надежды на проводимую ими реконструкцию логической структуры математики. Но не успели смолкнуть восторги по поводу якобы достигнутых успехов, как в реконструированной математике в свою очередь обнаружились противоречия. Обычно эти противоречия принято называть парадоксами — эвфемизм, позволяющий тем, кто его использует, обходить молчанием кардинальное обстоятельство: там, где есть противоречия, там нет логики.

Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре различных подхода к математике, которые были отчетливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления математики стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, т.е. старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела и к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись.

В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить что проводимые им математические доказательства по крайней мере согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он среди прочих важных и значительных результатов доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать ее непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматически-дедуктивный метод, столь высоко ценимый в прошлом как надежный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось и математики разбились на еще большее число группировок.

В настоящий момент положение дел в математике можно обрисовать примерно так. Существует не одна, а много математик, и каждая из них по ряду причин не удовлетворяет математиков, принадлежащих к другим школам. Стало ясно, что представление о своде общепринятых, незыблемых истин — величественной математике начала XIX в., гордости человека — не более чем заблуждение. На смену уверенности и благодушию, царившим в прошлом, пришли неуверенность и сомнения в будущем математики. Разногласия по поводу оснований самой «незыблемой» из наук вызвали удивление и разочарование (чтобы не сказать больше). Нынешнее состояние математики — не более чем жалкая пародия на математику прошлого с ее глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства.

Как думают некоторые математики, расхождения во мнениях относительно того, что следует считать настоящей математикой, когда-нибудь будут преодолены. Особое место среди тех, кто так считает, занимает группа ведущих французских математиков, пишущих под коллективным псевдонимом Никола Бурбаки:

С древнейших времен критические пересмотры оснований всей математики в целом или любого из ее разделов почти неизменно сменялись периодами неуверенности, когда возникали противоречия, которые приходилось решать… Но вот уже двадцать пять веков математики имеют обыкновение исправлять свои ошибки и видеть в этом обогащение, а не обеднение науки; это дает им право смотреть в будущее спокойно.

([2], с. 30.)

Но гораздо больше математиков настроены пессимистично. Один из величайших математиков XX в. Герман Вейль сказал в 1944 г.:

Вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками. «Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддается рационализации и не может быть объективным.

Говоря словами Гете, «история науки — это сама наука».

Разногласия по поводу того, что такое настоящая математика, и существование многочисленных вариантов оснований математики не только серьезно сказались на самой математике, но и оказали самое непосредственное влияние на физику. Как мы увидим, далее, наиболее развитые физические теории ныне полностью «математизированы». (Разумеется, выводы таких теорий интерпретируются посредством так или иначе наблюдаемых «чувственных», подлинно физических объектов: сидя у радиоприемников, мы слышим реальные голоса, чему не мешает отсутствие представления о том, что такое радиоволны.) Поэтому ученых — даже тех, кто не работает непосредственно над решением фундаментальных проблем, — не может не занимать вопрос о судьбах математики, которую они могут применять с уверенностью, не рискуя затратить годы на изыскания, некорректные в силу сомнительности использования математического аппарата.

Утрата критериев абсолютности истины, все возрастающая сложность математики и естественных наук, неуверенность в выборе правильного подхода к математике привели к тому, что большинство математиков оставили вопросы оснований. С проклятием «Чума на оба ваши дома!» они обратились к тем областям математики, где методы доказательства казались им надежными. Они нашли также, что проблемы, придуманные человеком, более привлекательны и легче поддаются решению, чем проблемы, поставленные природой.

Кризис математики и порожденные им конфликты по поводу того, что такое настоящая математика, отрицательно сказались и на применении математической методологии ко многим областям культуры: к философии, социальным и политическим наукам, этике и эстетике. Надежда на то, что удастся найти объективные, непреходящие законы и эталонные образцы знания, развеялась. «Век разума» закончился.

Несмотря на неудовлетворительное состояние математики, многочисленные существенно различные подходы, разногласия по поводу приемлемости аксиом и опасности возникновения новых противоречий, могущих подорвать значительную часть математической науки, многие математики продолжают применять математику для описания физических явлений и даже расширяют сферу ее применимости на экономику, биологию и социологию. Безотказная эффективность математики подсказывает две темы для обсуждения. Во-первых, такая эффективность может рассматриваться как критерий правильности. Разумеется, подобный критерий имеет временный характерно, что сегодня считается правильным, в дальнейшем может оказаться неверным.

Поделиться:
Популярные книги

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Темный Патриарх Светлого Рода 5

Лисицин Евгений
5. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 5

Иван Московский. Том 5. Злой лев

Ланцов Михаил Алексеевич
5. Иван Московский
Фантастика:
попаданцы
альтернативная история
6.20
рейтинг книги
Иван Московский. Том 5. Злой лев

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Назад в СССР: 1985 Книга 4

Гаусс Максим
4. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Назад в СССР: 1985 Книга 4

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8