Математика. Утрата определенности.
Шрифт:
Рассел, отстаивавший логистический тезис, по-прежнему защищал все, что было сделано им и Уайтхедом в первом издании «Оснований математики». В работе «Введение в математическую философию» ([79]*, 1919) он приводил следующие доводы:
При доказательстве этого тождества [математики и логики] все упирается в детали; начав с посылок, относящихся, по всеобщему признанию, к логике, и придя с помощью дедукции к результатам, заведомо принадлежащим математике, мы обнаружим, что нигде не возможно провести четкую границу, слева от которой находилась бы логика, а справа — математика. Если кто-нибудь вздумает отвергать тождество логики и математики, то мы можем оспорить его мнение, попросив указать то место в цепи определений и дедуктивных выводов «Оснований
Разногласия по поводу теории Кантора и аксиом выбора и бесконечности достигли в начале XX в. столь большой остроты, что Рассел и Уайтхед не стали включать две последние аксиомы в число аксиом своей системы, хотя и использовали их (во втором издании, 1926) при доказательстве некоторых теорем, каждый раз особо оговаривая, что вывод теорем опирается на «посторонние» аксиомы. Но аксиомы выбора и бесконечности оказались необходимыми для вывода значительной части классической математики. Во втором издании своих «Принципов математики» ([81]*, 1937) Расселу пришлось пойти на еще большие уступки. По его собственному признанию, «весь вопрос о том, что считать принципами логики, становится в значительной степени произвольным». Аксиомы бесконечности и выбора «можно доказывать или опровергать, лишь исходя из эмпирических данных». Тем не менее Рассел продолжал настаивать на единстве логики и математики.
Но и подобные признания не смогли заставить критику умолкнуть. В своей книге «Философия математики и естественных наук» ([93]*, 1949) Герман Вейль писал о том, что Рассел и Уайтхед возвели математику на основе
…не просто логики, а своего рода рая для логиков, мира, снабженною всем необходимым «инвентарем» весьма сложной структуры… Кто из здравомыслящих людей осмелится утверждать, что верит в этот трансцендентальный мир?.. Эта сложная структура требует от нас не меньшей веры, чем учения отцов церкви или средневековых философов-схоластов.
Критика логицизма имела и другой характер. Хотя в трех томах «Оснований математики» Рассела и Уайтхеда не нашлось места для последовательного построения геометрии, ни у кого не вызывало сомнений, что такое построение вполне осуществимо, если воспользоваться, как об этом уже говорилось, аналитической геометрией. Тем не менее иные критики утверждали, что авторы, сведя к логике систему аксиом целых чисел, тем самым свели к логике арифметику, алгебру и математический анализ, но не свели к логике «неарифметические» разделы математики, например геометрию, топологию и абстрактную алгебру. Такого мнения придерживался, в частности, логик Карл Гемпель, считавший, что хотя в случае арифметики неопределяемым, или первичным, понятиям оказалось возможным придать обычный смысл с помощью «чисто логических понятий», «аналогичная процедура неприменима к тем математическим дисциплинам, которые обязаны своим появлением на свет не арифметике». Коллега Гемпеля Уиллард Ван Орман Куайн, по мнению которого «вся математика сводится к логике», считал, что для геометрии существует «готовый метод, позволяющий свести ее к логике» и что топология и абстрактная алгебра «укладываются в общую структуру логики». Сам Рассел сомневался, что всю геометрию удастся вывести только из логики.
Философы также подвергли логистическое направление серьезной критике, суть которой сводилась к следующему. Если основной тезис логицизма верен, то вся математика является чисто формальной, логико-дедуктивной наукой, теоремы которой следуют из законов мышления. Казалось необъяснимым, каким образом с помощью дедуктивного вывода одни лишь законы мышления могут привести к описанию неисчерпаемого разнообразия явлений природы, к различным применениям чисел, геометрии пространства, акустике, электромагнетизму и механике. Именно так и следует понимать критическое замечание Вейля: «Из ничего и следует ничто».
Пуанкаре, со взглядами которого мы познакомимся подробнее в дальнейшем, также критически относился к тому, что считал бесплодными манипуляциями логическими
Эта наука [математика] не имеет единственной целью вечное созерцание своего собственного пупа; она приближается к природе, и раньше или позже она придет с ней в соприкосновение; в этот момент необходимо будет отбросить чисто словесные определения, которыми нельзя будет довольствоваться.
В той же книге (с. 397) Пуанкаре говорил:
Как бы там ни было, логистика должна быть переделана, и неизвестно, что в ней может быть спасено. Бесполезно прибавлять, что на карту поставлены только канторизм и логистика. Истинные математические науки, т.е. те, которые чему-нибудь служат, могут продолжать свое развитие только согласно свойственным им принципам, не заботясь о тех бурях, которые бушуют вне их; они будут шаг за шагом делать свои завоевания, которые являются окончательными и от которых им никогда не будет нужды отказываться.
Другое серьезное критическое замечание по поводу логистической программы состояло в том, что в процессе развития математики новые понятия, как выводимые, так и не выводимые непосредственно из опыта, формируются на основе чувственной или образной интуиции. Впрочем, как же иначе может возникать новое знание? Между тем в «Основаниях математики» все понятия сводятся к логическим. Формализация не дает сколько-нибудь реального представления о математике: это лишь шелуха, а не зерно. Высказывание Рассела: «Математика — такой предмет, в котором мы никогда не знаем ни того, о чем говорим, ни насколько верно то, что мы говорим» — вполне может быть адресовано логицизму.
На вопросы о том, каким образом могут входить в математику новые идеи и как математика может описывать реальный мир, если ее содержание целиком выводимо из логики, ответить нелегко, и Рассел и Уайтхед не дали на них никакого ответа. Один из возможных ответов состоял в том, что логицизм не ставит своей задачей объяснить, почему математика применима к реальному миру. На это можно было бы возразить, что математика применима к наиболее фундаментальным физическим принципам. По отношению к реальности их можно рассматривать как логические посылки. Математические методы позволяют извлекать из этих посылок такие заключения, как, например, pV = const(закон Бойля — Мариотта) или F = ma(второй закон Ньютона). Но эти заключения применимы к реальному миру. Возникает проблема соответствия реального мира «математической вселенной», базирующейся не на эмпирических фактах, а на дедуктивных выводах. {114} К этому вопросу мы вернемся в дальнейшем (гл. XV).
114
По этому поводу см. статьи выдающихся физиков, лауреатов Нобелевской премии Е.П. Вигнера [96]*, Ч. Янга [60] и В. Гейзенберга [61]; цитируемые в гл. XV высказывания А. Эйнштейна и названные там его статьи, а также [4].
Рассел продолжал размышлять над логистической программой и после выхода в свет второго издания «Оснований математики». В книге «Мое философское развитие» (1959) он признавал, что эта программа заключалась в постепенном отходе от «евклидианства» в сочетании с намерением по возможности сохранить максимум определенности. Критика логистической философии, несомненно, сказалась на позиции, занятой Расселом в конце 20-х годов XX в. Приступая к работе над «Основаниями математики» в самом начале XX в., Рассел считал аксиомы логики истинами. В издании «Принципов математики» 1937 г. он отказался от таких взглядов. Теперь уже Рассел не был убежден, что принципы логики являются априорными истинами. Следовательно, выводимую из логики математику также нельзя считать априори истинной.