Математика. Утрата определенности.
Шрифт:
Столь выдающиеся достижения математической мысли, как неевклидова геометрия и кватернионы, казалось, явно не согласуются с природой, хотя их создатели и исходили из физических соображений. {153} Тем не менее и неевклидова геометрия, и кватернионы, как выяснилось впоследствии, вполне применимы к описанию реального мира. Осознание того, что творения человеческого ума, равно как и все понятия, традиционно считавшиеся внутренне присущими «плану мироздания», весьма пригодны для описания природы, вскоре привело к развитию совершенно нового подхода к математике. Почему это не может случиться с творениями человеческого разума и в будущем? Многие математики пришли к выводу, что заниматься решением проблем, так или иначе связанных с реальным миром, совершенно не обязательно: ведь и математика как свод идей, зародившихся в человеческом разуме, рано или поздно непременно окажется полезной. Более того, чистое мышление, не стесняемое необходимостью следовать за физическими явлениями, обретает большую свободу и соответственно продвигается дальше. Человеческое воображение, не знающее оков, создает более мощные теории,
153
В частности, законы умножения гамильтоновых «кватернионных единиц» i, jи kпрояснило идущее от Гамильтона отождествление этих «единиц» с (физическими) вращениями пространства на 90° вокруг трех взаимно перпендикулярный осей: 0x, 0yи 0z.
Были и другие причины, побудившие математиков отойти от изучения реального мира. Широкий размах математических и естественнонаучных исследований не позволял ученым чувствовать себя одинаково свободно и в математике, и в естественных науках. Стоящие перед естествознанием проблемы, подобные тем, в решении которых ранее неизменно принимали участие великие математики, ныне становились все более сложными. Так почему бы, решили математики, не ограничить свою деятельность рамками чистой математики и тем не облегчить себе работу?
Существовала еще одна причина, вынудившая многих математиков обратиться к проблемам чистой математики. Естественнонаучные проблемы редко удается решить окончательно раз и навсегда. Обычно ученые получают все лучшее приближение, но отнюдь не полное решение задачи. Основные научные проблемы, например проблема трех тел, т.е. описания движения трех тел (скажем, Солнца, Земли и Луны), каждое из которых притягивает два других тела, по-прежнему остаются нерешенными. Как заметил Фрэнсис Бэкон, изощренность природы неизмеримо превосходит человеческую мудрость. А чистая математика, напротив, дает нам примеры четко поставленных проблем, допускающих полное решение. Для человеческого разума такие четко поставленные и до конца решаемые проблемы обладают особой привлекательностью в отличие от проблем недосягаемой глубины и неисчерпаемой сложности. Немногие проблемы, устоявшие перед натиском математиков нескольких поколений (например, гипотеза Гольдбаха), формулируются подкупающе просто.
Говоря о мотивах, побуждающих обращаться к проблемам чистой математики, нельзя не упомянуть о давлении, оказываемом на математиков со стороны тех учреждений, где они работают, например университетов, — требовании публиковать результаты своих исследований. Поскольку для решения прикладных проблем необходимы обширные познания по крайней мере в одной из естественных наук и в математике, а нерешенные проблемы по трудности превосходят чисто математические, гораздо легче придумывать свои собственные задачи и решать то, что возможно решить. Профессора не только сами выбирают проблемы, поддающиеся решению, но и предлагают их своим ученикам в качестве тем для диссертаций. При этом профессора во многих случаях действительно могут помочь диссертантам преодолеть любые встречающиеся на их пути трудности.
Назовем несколько направлений, в которых развивается современная чистая математика, — это позволит читателю лучше понять различие между чисто математическими и прикладными проблемами. Одно из таких направлений — абстракция.После того как Гамильтон ввел кватернионы, которые он намеревался применить к решению физических проблем, другие математики поняли возможность существования не одной, а многих алгебр и занялись поиском всех возможных алгебр, не задумываясь над тем, насколько они применимы к описанию реального мира. Это направление математической деятельности процветает и поныне; оно является одним из направлений абстрактной алгебры.
Другое направление чистой математики — обобщение.Конические сечения (эллипс, парабола и гипербола) описываются алгебраическими уравнениями второй степени. В приложениях встречаются также кривые, описываемые уравнениями третьей степени. Обобщение позволяет перепрыгнуть сразу к кривым, описываемым алгебраическими уравнениями n-й степени, и подробно изучить их свойства, хотя такие кривые вряд ли могут помочь нам при описании явлений природы.
Обобщение и абстракция, предпринятые с единственной целью — написать очередную статью для «отчета», как правило, не представляют ценности с точки зрения приложений. {154} Подавляющее большинство работ такого рода посвящено переформулировке на более общем и более абстрактном языке с использованием новой терминологии того, что было известно и раньше, но излагалось на более простом и частном языке. Что же касается приложений математики, то здесь такая переформулировка не дает ни более мощного метода, ни более глубокого понимания. Распространение новомодной терминологии, как правило искусственной и не связанной с какими-либо физическими идеями, хотя и направленной якобы на модернизацию идей, заведомо не способствует более эффективному применению математики, а, наоборот, затрудняет его. Это новый язык, но не новая математика.
154
Здесь трудно удержаться от соблазна процитировать одно место из предисловия к книге [100] замечательных математиков и педагогов Д. Пойа (Полиа) и Г. Сегё: «Не нужно забывать, что существуют обобщения двух родов: малоценные и полноценные. Первые — обобщения путем разрежения, другие — путем сгущения. Разредить — значит, наболтав воды, изготовить жиденькую похлебку, сгустить — значит составить полезный, питательный экстракт. Соединение понятий,
Третье направление, избираемое чистой математикой, — специализация.Еще Евклид ставил и решал вопрос о том, существует ли бесконечно много простых чисел. Теперь «естественно» спросить, существует ли простое число среди любых семи последовательных целых чисел. Пифагорейцы ввели понятие дружественных чисел. Два числа называются дружественными,если сумма делителей одного числа равна другому числу. Например, 284 и 220 — дружественные числа. Один из лучших специалистов по теории чисел Леонард Диксон предложил задачу о дружественных тройках чисел. «Мы будем говорить, что три числа образуют дружественную тройку, если сумма собственных делителей каждого числа равна сумме двух других чисел», — писал Диксон и поставил задачу об отыскании таких троек. Другой пример подобного рода относится к так называемым степеннымчислам. Условимся называть натуральное число nстепенным, если из того, что nделится на простое число p,следует, что оно делится и на p 2(другими словами, если в «каноническом» разложении n = р 1 1•р 2 2•…•p k kчисла nна простые множители все показатели степени 1, 2, …, k >= 2). Существуют ли положительные целые числа (отличные от 1 и 4), представимые бесконечно многими способами в виде разности двух взаимно-простых степенных чисел?
Мы выбрали приведенные выше примеры специализации потому, что их нетрудно сформулировать и понять, хотя кажущаяся простота отнюдь не соответствует сложности и глубине таких проблем. Однако специализация распространилась настолько широко, а проблемы настолько сузились, что к большинству современных отраслей математики вполне применимо высказывание, некогда несправедливо адресованное теории относительности: во всем мире вряд ли найдется дюжина людей, понимающих эту теорию.
Распространение специализации приняло столь широкие масштабы, что группа выдающихся французских математиков, выступающих под коллективным псевдонимом Никола Бурбаки, группа, заведомо не занимающаяся прикладной математикой {155} , сочла необходимым выступить с критикой сложившегося положения:
155
Вожди группы Бурбаки охотно декларировали «антиприкладной» характер своего творчества (ср., например, цитируемую ниже статью [115] Ж. Дьедонне), но к этому их тезису, как и к некоторым другим высказываниям, следует относиться с осторожностью. Известно, что один из основателей (и наиболее влиятельных членов) группы Бурбаки Андре Вейль по просьбе знаменитого антрополога и философа Клода Леви-Стросса написал математическое приложение «Математическая теория брачных союзов» к диссертации Леви-Стросса «Элементарные системы родства» (1949). С другой стороны, весьма близкий группе Бурбаки Рене Том является создателем имеющей огромное прикладное значение так называемой теории катастроф (см. [101]) и отличается поразительной широтой внематематических интересов (см., например, [102]). Кроме того, несмотря на неоднократно декларировавшуюся вождями группы Бурбаки антиприкладную направленность их группы, в целом свойственное этой группе стремление рассматривать математику как науку о математических структурах (см. [11]*) идет навстречу определенным устремлениям в современной прикладной математике, выражающимся в росте значения математического моделирования внематематических феноменов (ср. [103]).
Многие из математиков устраиваются в каком-нибудь закоулке математической науки, откуда они и не стремятся выйти, и не только почти полностью игнорируют все то, что не касается предмета их исследований, но не в силах даже понять язык и терминологию своих собратьев, специальность которых далека от них. Нет такого математика, даже среди обладающих самой обширной эрудицией, который бы не чувствовал себя чужеземцем в некоторых областях огромного математического мира; что же касается тех, кто, подобно Пуанкаре или Гильберту, оставляет печать своего гения почти во всех его областях, то они составляют даже среди наиболее великих редчайшее исключение.
За страсть к специализации математика платит бесплодием. Способствуя виртуозности, специализация редко приводит к значительным результатам.
Абстракция, обобщение и специализация — три направления деятельности, избираемых чистыми математиками. Четвертое направление — аксиоматизация.Развернувшееся в XIX в. движение за аксиоматизацию, несомненно, способствовало укреплению оснований математики, хотя последнее слово в решении проблем, связанных с основаниями математики, осталось не за аксиоматикой. Но вскоре многие математики принялись за тривиальную модификацию только что созданных аксиоматических систем. Одним удавалось показать, что некую аксиому можно сформулировать проще, если воспользоваться другой ее редакцией. Другие показывали, что если пожертвовать простотой формулировки, то три аксиомы можно свести всего лишь к двум аксиомам. Третьи вводили новые неопределяемые термины и, перекроив все аксиомы, приходили к тому же множеству теорем.