Математика. Утрата определенности.
Шрифт:
Хотя Дьедонне отчетливо представлял себе нескончаемую вереницу проблем чистой математики, он — надо отдать ему должное — не обошел молчанием тезис о том, что всякое творение чистой математики в конечном счете находит применение. Приведя внушительный перечень исследований по чистой математике, и в частности по теории чисел, Дьедонне заметил: «Трудно представить, что подобные результаты окажутся применимыми к какой-нибудь физической проблеме». Выступая в защиту чистой математики в целом, Дьедонне вместе с тем не мог не заметить, что хвастливые заявления математиков о ценности чистой математики для естественных наук представляют собой своего рода «мелкое жульничество». По словам Дьедонне, чистые математики не пожалеют сил, чтобы доказать единственность решения какой-нибудь проблемы, но не ударят палец о палец, чтобы попытаться найти это решение. Физик же знает, что решение существует и единственно (Земля не обращается вокруг Солнца по двум различным
Более реалистических взглядов на значимость той математики, которой следовало бы заниматься, придерживался человек, который по своим заслугам в области чистой математики не уступал Дьедонне, — швед Ларе Гординг. Свои взгляды он изложил в докладе на Международном конгрессе математиков в 1958 г.:
Я не могу здесь вдаваться во многие важные части интересующего нас предмета, например в теорию разностных уравнений, теорию систем, приложения к квантовой механике и дифференциальной геометрии. Мой предмет — общая теория дифференциальных операторов с частными производными. Он вырос из классической физики, но не имеет сколько-нибудь существенных применений к ней. Тем не менее физика по-прежнему остается для него основным источником интересных проблем. У меня сложилось убеждение, что общие доклады, подобные тому, с которым я сейчас выступаю, менее полезны, чем периодические обзоры нерешенных физических проблем, требующих новых математических методов. Такие обзоры вряд ли сообщали что-либо новое специалистам, но могли бы указать многим математикам задачи, заслуживающие внимания. Усилия, направленные на более тесное взаимодействие между физикой и математикой, редко планировались заранее. Но именно они должны стать главной заботой международных математических конгрессов.
Тех, кто гордится созданием математики, не опороченной связью с физическим миром, а под давлением начинает утверждать, что в один прекрасный день другие найдут применение их ныне бесцельным работам, можно было бы оставить в покое. Но их действия противоречат всему ходу истории. Их уверенность в том, что математика, освобожденная от связей с естественными науками, принесет более весомые, разнообразные и плодотворные результаты, применимые к более широкому кругу явлений, чем старая, традиционная математика, не подкрепляется ничем, кроме их же собственного голословного утверждения.
Сторонники чистой математики могут выдвигать (и действительно выдвигают) и другие аргументы в защиту ценности своей работы, ссылаясь на внутреннюю красоту таких исследований и интеллектуальный вызов, который они бросают ученому. В существовании подобных ценностей вряд ли кто-нибудь сомневается. Но позволительно усомниться в том, что они могут служить достаточным основанием для огромного количества работ по чистой математике. Какого бы мнения мы ни придерживались, ясно одно: эти ценности не вносят никакого вклада в то, что придает математике наибольшую значимость, — в изучение природы. Красота и интеллектуальный вызов — атрибуты математики ради математики. Но эти проблемы, безусловно, заслуживают особого разговора, который выходит далеко за рамки нашего рассказа об изоляции математики.
Защитники и критики чистой математики по вполне понятным причинам находятся в довольно натянутых отношениях друг с другом. Все споры между ними тотчас рождают юмористические или саркастические замечания. Прикладные математики, язвят приверженцы чистой математики, не заботятся о строгих доказательствах — единственно, что их интересует, это соответствие полученных ими результатов физическим явлениям. Типичным представителем прикладной математики был один из основоположников современной «теоретической электротехники» англичанин Оливер Хевисайд (1856-1925). Применяемые им методы решений, с точки зрения чистых математиков, были сомнительны в силу полной своей необоснованности, за что Хевисайда не раз резко критиковали. В свою очередь Хевисайд относился к своим критикам, которых он называл «логическими контролерами», с высокомерным пренебрежением. «Логике нетрудно быть терпеливой, ведь она вечна», — говорил он. Ему доводилось не раз приводить чистых математиков в замешательство. В те времена, когда так называемые расходящиеся ряды считались полностью «незаконными», Хевисайд заявил по поводу одного из таких рядов: «Подумаешь, ряд расходится! Ведь можем же мы что-нибудь с ним сделать!» Впоследствии все «экстравагантные» методы Хевисайда были строго обоснованы и даже породили новые направления математических исследований. Дабы уязвить пуристов, прикладные математики имеют обыкновение утверждать, что чистые математики способны лишь находить трудности в любом решении, тогда как прикладные математики могут разрешить любую трудность. Популярно также высказывание, что чистые математики решают «то, что можно, так как нужно», а прикладные — «то, что нужно, так как можно».
Прикладные математики любят поддразнивать пуристов и по-другому. Математикам, работающим
А чтобы еще больше унизить своих извечных противников, прикладные математики рассказывают, и такую историю. У одного человека скопилось грязное белье, и он отправился на поиски прачечной. Увидев вывеску «Прием белья в стирку», он заходит в помещение и кладет узел с бельем на прилавок. Владелец заведения, глядя на посетителя с некоторым удивлением, спрашивает: «Что вам угодно?» «Я хочу отдать белье в стирку», — говорит посетитель. «Но мы не принимаем белье в стирку», — отвечает хозяин заведения. На этот раз удивляется посетитель. «А для чего же эта вывеска в витрине?» — спрашивает он. «Не обращайте на нее внимания, — отвечает хозяин, — мы ее сделали просто так».
Спор между прикладными и чистыми математиками продолжается, а поскольку в современной математике тон задают чистые математики, они могут позволить себе смотреть сверху вниз на своих «заблудших собратьев» и даже выговаривать им. Как заметил профессор Клиффорд Э. Трусделл, "«прикладная математика» — это оскорбление, наносимое теми, кто считает себя «чистыми» математиками, тем, кого они считают нечистыми… но «чистая» математика — самоубийственное отрицание своего происхождения от воспринимаемых человеком ощущений или тайный пароль, позволяющий «чистых» отличать от «нечистых», — не более чем болезнь, изобретенная в прошлом веке…". Она стала самоцелью, и никому из чистых математиков не приходит в голову задуматься над тем, для чего нужна их наука. Само по себе такое положение не слишком завидно. Цель математики — открывать нечто достойное познания. Ныне же одно математическое исследование порождает другое, то в свою очередь порождает третье и т.д. В храме математики никто более не осмеливается спрашивать что-либо о цели и смысле. Математика утратила связь с реальностью. Стены башни из слоновой кости стали настолько толстыми, что находящиеся внутри ее исследователи перестали видеть то, что происходит снаружи. Попавшие в башню умы оказались в изоляции.
Математики могут расходиться во мнениях, но физикам и представителям других наук не остается ничего другого, как оплакивать то горестное положение, в котором они оказались. Вот что говорит, например, профессор Массачусетского технологического института Джон Кларк Слэтер:
Физик получает очень мало помощи от математика. На каждого математика, способного понять прикладные проблемы, как фон Нейман, и внести реальный вклад в их решение, приходится двадцать математиков, не проявляющих к прикладным проблемам ни малейшего интереса, работающих либо в областях, далеких от физики, либо уделяющих основное внимание более старым и знакомым разделам математической физики. Неудивительно, что при взгляде на математиков физик испытывает такое чувство, будто они сошли с пути, который в прошлом привел к величию математики, и вряд ли ступят на него до тех пор, пока решительно не войдут в основной поток развития математической физики, потому что именно ей мы обязаны наиболее плодотворными достижениями математики в прошлом… Это единственный путь, способный привести современного математика к величию.
Забвение интересов физики было избрано темой большой лекции [116], с которой в 1972 г. выступил перед математиками известный американский физик Фримен Джон Дайсон. И прежде, и теперь, отметил Дайсон, математикам неоднократно предоставлялась возможность внести свой вклад в решение физических проблем первостепенной важности, но математики неизменно упускали свей шанс. Некоторые из этих проблем, полностью или частично, каким-то образом все же проникли в математику, но математикам не известно ни их происхождение, ни физическая значимость. Математики следуют в произвольном направлении и не пытаются даже осмысливать собственные достижения. По словам Дайсона, брак между математикой и физикой закончился разводом.
В XX в. разрыв между математикой и физикой ускорился. В наше время нередко приходится слышать и читать заявления математиков о том, что их наука не зависит от естественных наук. Математики теперь, не колеблясь, открыто признают, что их интересы сосредоточены на чистой математике, а физика им безразлична. Хотя точная статистика неизвестна, но можно полагать, что основная часть работающих сегодня математиков не сведущи в физике и спокойно пребывают в этом благословенном состоянии. Несмотря на опыт истории и на критику, тенденция к абстракции, к обобщению ради обобщения и к изучению произвольно выбранных проблем сохраняется в математике и поныне. Разумная потребность в изучении целого класса проблем с целью более глубокого понимания частных случаев и в абстракции с целью выявления сущности проблемы стала не более чем предлогом для обобщений ради обобщений и абстракций ради абстракций.