Математика. Утрата определенности.
Шрифт:
Прогресс математики представляет собой цепочку великих интуитивных озарений, впоследствии получавших обоснования, которые возникают не за один прием, а путем последовательных поправок, долженствующих исправить различного рода ошибки и упущения, вводимых до тех пор, пока доказательство не достигнет приемлемого для своего времени уровня строгости. {164} Ни одно доказательство не является окончательным. Новые контрпримеры подрывают старые доказательства, лишая их силы. Доказательства пересматриваются, и новые варианты ошибочно считаются окончательными. Но, как учит история, это означает лишь, что для критического пересмотра доказательства еще не настало время. Иногда математики сознательно откладывают
164
Классический пример, подкрепляющий высказанную мысль, доставляет нам хотя бы теория пределов,начавшаяся с принадлежащей Ньютону «чисто физической» концепции предела; также и первое определение предела, данное Д'Аламбером в одноименной статье знаменитой «Энциклопедии», с нашей сегодняшней точки зрения было дефектным (так, например, Д'Аламбер настаивал на монотонном приближении переменной величины к своему пределу). Ныне же мы имеем много разных определений этого понятия с разными областями применимости. (О другом примере такого рода — лейбницевском исчислении дифференциалов — ниже говорит сам автор.)
Некоторые школы пытались заточить математику в стенах логики. Но интуиция не терпит никаких посягательств на свою свободу. Представление о математике как о своде абсолютно надежных, бесспорных и неопровержимых истин, имеющих под собой прочное основание, разумеется, восходит к классическому периоду, воплощенному в «Началах» Евклида. Греческий идеал довлел над мышлением математиков более двадцати столетий. Но «злой гений» Евклид явно сбил математиков с истинного пути.
В действительности математик не полагается на строгое доказательство до такой степени, как обычно считают. Его творения обретают для него смысл до всякой формализации, и именно этот смысл сам по себе придает реальность. Попытки установить точные границы результата путем вывода его из системы аксиом могут оказаться в известной степени полезными, но, по существу, они довольно слабо влияют на значение результата.
Интуиция может оказаться более удовлетворительной и вселять большую уверенность, чем логика. Когда математик спрашивает себя, почему верен тот или иной результат, он ищет ответа в интуитивном понимании. Строгое доказательство ничего не значит для математика, если результат ему непонятен интуитивно. Обнаружив непонимание, математик подвергает доказательство тщательнейшему критическому пересмотру. Если доказательство покажется ему правильным, то он приложит все силы, чтобы понять, почему интуиция подвела его. Математик жаждет понять внутреннюю причину, по которой успешно срабатывает цепочка силлогизмов. Пуанкаре сказал однажды: «Когда довольно длинное рассуждение приводит нас к простому и неожиданному результату, мы не успокаиваемся до тех пор, пока нам не удается показать, что полученный результат — если не целиком, то по крайней мере в общих чертах — можно было предвидеть заранее».
Многие математики предпочитали полагаться на интуицию. Артур Шопенгауэр объяснил это так: «Чтобы усовершенствовать метод в математике, необходимо прежде всего решительно отказаться от предрассудка — веры в то, будто доказанная истина превыше интуитивного знания». Паскалю принадлежат два выражения — esprit de g'eom'etrie[дух геометрии] и esprit de finesse[дух проницательности]. Под первым Паскаль понимал силу и прямоту ума, проявляющиеся в железной логике рассуждений. {165}
165
Напомним, что в те времена под словом «геометрия» часто понималась вся математика.
Задолго до Паскаля другие математики также утверждали, что интуитивное убеждение превосходит логику подобно тому, как ослепительный блеск Солнца затмевает бледное сияние Луны. Декарт полагался на врожденные интуитивные представления. По поводу логики Декарт заметил: «Я обнаружил, что силлогизмы и большинство посылок логики более пригодны, когда речь идет о вещах уже известных, или о вещах, в которых говорящий несведущ». Тем не менее Декарт охотно дополнял интуицию дедуктивными рассуждениями (гл. II).
Великие математики заранее, еще до того, как им удавалось найти логическое доказательство, знали, что какая-то теорема верна, и иногда ограничивались всего лишь беглым наброском доказательства. Более того, Ферма в своей обширной классической работе по теории чисел и Ньютон в работе по кривым третьего порядка не привели даже набросков доказательств. Прогрессу математики, несомненно, способствовали главным образом люди, наделенные не столько способностью проводить строгие доказательства, сколько необычайно сильной интуицией.
Итак, понятие доказательства, сколь ни преувеличивали его значение общественное мнение и публикации математиков, не играло той роли, которая ему обычно отводилась. Возникновение противоборствующих философий математики, каждая из которых отстаивала свои мерки строгости доказательства, вызывало скептическую переоценку важности доказательства. Критические нападки на понятие доказательства начались еще до того, как успели сформироваться различные течения в основаниях математики и их взаимно исключающие точки зрения получили сколько-нибудь широкое распространение. Еще в 1928 г. Годфри Гарольд Харди утверждал с присущей ему прямотой:
Строго говоря, того, что принято называть математическим доказательством, не существует… В конечном счете мы можем лишь указывать… Любое доказательство представляет собой то, что мы с Литтлвудом называем газом, — риторические завитушки, предназначенные для психологического воздействия, картинки, рисуемые на доске во время лекции, средство для стимуляции воображения учащихся.
Харди считал доказательства скорее фасадом, чем несущими опорами здания математики.
В 1944 г. выдающийся американский математик Рэймонд Луис Уайлдер выступил с вполне обоснованной статьей [98]*, в которой низвел доказательство на еще более низкую ступень. Доказательство, утверждал Уайлдер, есть не что иное, как
проверка продуктов нашей интуиции… Совершенно ясно, что мы не обладали и, по-видимому, никогда не будем обладать критерием доказательства, не зависящим ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерий, будь то отдельное лицо или школа мышления, в этих условиях самое разумное, пожалуй, призвать, что, как правило, в математике не существует абсолютно истинного доказательства, хотя широкая публика убеждена в обратном.
Ценность доказательства, как такового, подверг критике Уайтхед в своей лекции под названием «Бессмертие»:
Резюмируя, можно сказать, что логика, понимаемая как адекватный анализ процесса человеческого мышления, есть не более чем — обман. Логика — превосходный инструмент, но ей необходим в качестве основы здравый смысл… По моему убеждению, окончательный вид, принимаемый философской мыслью, не может опираться на точные утверждения, составляющие основу специальных наук. Точность иллюзорна.