Математики тоже шутят
Шрифт:
15. «И гений — парадоксов друг...»
В продолжение предыдущей темы стоит упомянуть про рефлексивные парадоксы.
В уже упоминавшейся ранее книге Дж. Литлвуда «Математическая смесь» справедливо говорится, что «все рефлексивные парадоксы являются, конечно, превосходными шутками». Там же приводятся два из них, которые я позволю себе процитировать:
1. Должны существовать (положительные) целые числа, которые не могут быть заданы фразами, состоящими менее, чем из шестнадцати слов. Любое множество положительных целых чисел содержит наименьшее число, и поэтому существует число N, «наименьшее целое число, которое не может быть задано фразой, состоящей из менее, чем шестнадцати
2. В журнале Spectatorбыл объявлен конкурс на тему «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» Первый приз получил ответ:
Первый приз во втором конкурсе этого года присужден мистеру Артуру Робинсону, остроумный ответ которого без натяжки должен быть признан наилучшим. Его ответ на вопрос: «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» был озаглавлен «Наш второй конкурс», но из-за лимитирования бумаги мы не можем напечатать его полностью.
16. Палиндроматика
Есть такие удивительные фразы, которые читаются одинаково и слева направо и справа налево. Одну наверняка знают все: А роза упала на лапу Азора. Именно ее просила написать в диктанте неуча Буратино капризная Мальвина. Называются такие взаимообратные фразы палиндромами, что в переводе с греческого означает «бегущий назад, возвращающийся». Вот еще несколько примеров: 1. Лилипут сома на мосту пилил. 2. Лезу на санузел. 3. Лег на храм, и дивен и невидим архангел. 4. Нажал кабан на баклажан. 5. Муза, ранясь шилом опыта, ты помолишься на разум. (Д. Авалиани). 6. Уж редко рукою окурок держу... (Б. Гольдштейн) 7. Учуя молоко, я около мяучу. (Г. Лукомников). 8. Он верба, но она — бревно. (С. Ф.)
А интересно, есть ли палиндромы в математике? Для ответа на этот вопрос попробуем перенести идею взаимообратного, симметричного прочтения на числа и формулы. Оказывается, это не так уж и трудно. Познакомимся лишь с несколькими характерными примерами из этой палиндромной математики, палиндроматики. Оставляя в стороне палиндромные числа — например, 1991 , 666 и т.д. — обратимся сразу к симметричным формулам.
Попытаемся для начала решить такую задачу: найти все пары таких двузначных чисел
( x 1 — первая цифра, y 1 — вторая цифра) и
чтобы результат их сложения не менялся в результате прочтения суммы справа налево, т.е.
Например, 42 + 35 = 53 + 24.
Задача решается тривиально: сумма первых цифр у всех таких пар чисел равна сумме их вторых цифр. Теперь можно без труда строить подобные примеры: 76 + 34 = 43 + 67, 25 + 63 = 36 + 52 и так далее.
Можно развивать эти идеи дальше — например, так: 79 + 42 = 121 = 24 + 97 (Г. Лукомников) или даже так: XI + IV = VI + IX (В. Силиванов)
Рассуждая аналогичным образом, можно легко решить такую же задачу для остальных арифметических действий.
В случае разности, т.е.
получаются следующие примеры: 41 – 32 = 23 –14, 46 – 28 = 82 – 64, ... — суммы цифр у таких чисел равны ( x 1 + y 1 = x 2 + y 2 ).
В случае умножения имеем: 63 • 48 = 84 • 36, 82 • 14 = 41 • 28, ... — при этом произведение первых цифр у чисел N 1 и N 2 равно произведению их вторых цифр ( x 1 • x 2 = y 1 • y 2 ).
Наконец, для деления получаем такие примеры:
— в этом случае произведение первой цифры числа N 1 на вторую цифру числа N 2 равно произведению двух других их цифр, т.е. x 1 • y 2 = x 2 • y 1 .
17. Антисоветская теорема
Доказательство следующей «теоремы», появившейся в эпоху «недоразвитого социализма», опирается на популярные тезисы тех лет относительно роли Коммунистической партии.
Теорема. Роль партии — отрицательна.
Доказательство. Хорошо известно, что:
1. Роль партии непрерывно возрастает.
2. При коммунизме, в бесклассовом обществе, роль партии будет нулевой.
Таким образом, имеем непрерывно возрастающую функцию, стремящуюся к 0. Следовательно, она отрицательна. Теорема доказана.
18. Детям до шестнадцати решать запрещается
Несмотря на кажущуюся абсурдность следующей задачи, у нее, тем не менее, есть вполне строгое решение.
Задача.Мама старше сына на 21 год. Через шесть лет она будет старше его в пять раз. Спрашивается: ГДЕ ПАПА?!
Решение. Пусть X— возраст сына, а Y— возраст мамы. Тогда условие задачи записывается в виде системы двух простых уравнений: