Математики тоже шутят
Шрифт:
Подставляя Y= X+ 21 во второе уравнение, получим 5 X+ 30 = X+ 21 + 6, откуда X= –3/4. Таким образом, сейчас сыну минус 3/4 года, т.е. минус 9 месяцев. А это значит, что папа в данный момент находится на маме!
19. Неожиданный вывод
Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается,
А именно, начнем с двух всем известных постулатов:
Постулат 1: Знание = Сила.
Постулат 2: Время = Деньги.
Кроме того, любой школьник знает, что
Путь s = Скорость x Время = Работа : Сила,
Откуда
Работа : Время = Сила x Скорость(*)
Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:
Работа : (Знание x Скорость) = Деньги(**)
Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.
Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.
20. Математическая игра Ландау
Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, , sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала ( n! = 1 x 2 x ... х n), но не допускается использование секанса, косеканса и дифференцирования.
Например, для пары 75–33 искомое равенство достигается следующим образом:
а для пары 00–38 — так:
Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» — спросил я у Ландау. — «Нет», — ответил он весьма определенно. — «Вы доказали теорему о несуществовании решения?» — удивился я. — «Нет», — убежденно сказал Лев Давидович, — «но не все номера у меня получались».
Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.
Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу
позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», — пишет об этом решении Каганов. — «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли
Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы
Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.
В конце концов, автор исходной заметки про игру Ландау, проф. Горобец дал еще одно, почти тривиальное общее решение: «Возьмем произвольный номер a,b—c,dи рассмотрим три случая.
1. Пусть среди цифр нет нулей. Составим из них два числа abи cd, (это, разумеется, не произведения). Покажем, что при n>= 6:
sin[( ab)!]° = sin[( cd)!]° = 0.
Действительно, sin( n!)° = 0, если n>= 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.
2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.
3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.
Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin( n!)° /= 0, если n< 6».
Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.
21. Гадание по определителям
Если посчитать этот шутливый определитель, написанный по идее московского математика Ю. А. Шевченко, то получится примерно следующее: Петя любит Машу, а Маша не любит математику.
22. 9 знаков
Еще про определители.
Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают — ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.
Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.
23. Как академики задачу решали
Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».
Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) — «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.