Чтение онлайн

на главную - закладки

Жанры

Математики тоже шутят
Шрифт:

Подставляя Y= X+ 21 во второе уравнение, получим 5 X+ 30 = X+ 21 + 6, откуда X= –3/4. Таким образом, сейчас сыну минус 3/4 года, т.е. минус 9 месяцев. А это значит, что папа в данный момент находится на маме!

19. Неожиданный вывод

Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается,

у этого грустного феномена есть строгое математическое обоснование, опирающееся на столь же бесспорные истины.

А именно, начнем с двух всем известных постулатов:

Постулат 1: Знание = Сила.

Постулат 2: Время = Деньги.

Кроме того, любой школьник знает, что

Путь s = Скорость x Время = Работа : Сила,

Откуда

Работа : Время = Сила x Скорость(*)

Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:

Работа : (Знание x Скорость) = Деньги(**)

Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.

Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.

20. Математическая игра Ландау

Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, , sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала ( n! = 1 x 2 x ... х n), но не допускается использование секанса, косеканса и дифференцирования.

Например, для пары 75–33 искомое равенство достигается следующим образом:

а для пары 00–38 — так:

Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» — спросил я у Ландау. — «Нет», — ответил он весьма определенно. — «Вы доказали теорему о несуществовании решения?» — удивился я. — «Нет», — убежденно сказал Лев Давидович, — «но не все номера у меня получались».

Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.

Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу

позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», — пишет об этом решении Каганов. — «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли

его в каком-нибудь научном журнале».

Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.

В конце концов, автор исходной заметки про игру Ландау, проф. Горобец дал еще одно, почти тривиальное общее решение: «Возьмем произвольный номер a,b—c,dи рассмотрим три случая.

1. Пусть среди цифр нет нулей. Составим из них два числа abи cd, (это, разумеется, не произведения). Покажем, что при n>= 6:

sin[( ab)!]° = sin[( cd)!]° = 0.

Действительно, sin( n!)° = 0, если n>= 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.

2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.

3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.

Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin( n!)° /= 0, если n< 6».

Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.

21. Гадание по определителям

Если посчитать этот шутливый определитель, написанный по идее московского математика Ю. А. Шевченко, то получится примерно следующее: Петя любит Машу, а Маша не любит математику.

22. 9 знаков

Еще про определители.

Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают — ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.

Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.

23. Как академики задачу решали

Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».

Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) — «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.

Поделиться:
Популярные книги

Удиви меня

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Удиви меня

Live-rpg. эволюция-5

Кронос Александр
5. Эволюция. Live-RPG
Фантастика:
боевая фантастика
5.69
рейтинг книги
Live-rpg. эволюция-5

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Наемный корпус

Вайс Александр
5. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
космоопера
5.00
рейтинг книги
Наемный корпус

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Измена. Верну тебя, жена

Дали Мила
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верну тебя, жена