Майкл Фарадей. Его жизнь и научная деятельность
Шрифт:
Тиндаль, характеризуя эту сторону работ Фарадея, выражается следующим образом: “Он играл земным магнетизмом, как волшебник магическим жезлом. Освещал невидимые линии, по которым действовала сила земного магнетизма, и, пересекая их своею волшебной палочкой, заставлял эту новую силу повиноваться его вызову”. Вот некоторые из относящихся сюда опытов Фарадея. Окружая магнитную стрелку простою проволочною петлей, Фарадей наклонял верхнюю часть петли к западу; северный полюс стрелки поворачивался к западу. В другом опыте Фарадей соединял полюс магнитной полосы с одним концом гальванометра, а экватор полосы с другим, вешал полосу вертикально и начинал вертеть ее вокруг собственной оси, – и ток стремился от магнита к гальванометру.
Все эти изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году теорию телеграфа, которая затем и легла в основу этого благодетельного изобретения. Фарадей ясно представлял себе, что если концы телеграфной проволоки зарыть в землю, то, раз в проволоке будет возбужден ток, он неизбежно возбудится в противоположном направлении в земле между концами проволоки. Затем, он не сомневался, что земля, в свою очередь, возбудит ток в проволоке, концы которой опущены в землю. Опыты, направленные к обнаружению этого предположенного явления, не удавались Фарадею, но, как известно, теперь это точно установленный факт, с особенною резкостью наблюдаемый на подводных кабелях.
Этот ряд исследований в области электрической индукции Фарадей закончил
Мы выше уже сделали краткую оценку практического значения для человечества изложенных открытий Фарадея в области электрической индукции и электромагнетизма. Составляя основу современной электротехники, дав промышленности средство пользоваться громадными естественными силами течения рек, водопадов, ветра, морских приливов и так далее, путем превращения этих сил в электрическую энергию, которая затем приводит в движение машины, освещает города, дает тепло жилищам, производит химические процессы в различных производствах, служит лечебным средством и так далее, и так далее, открытия Фарадея дают ему полное право на звание великого благодетеля человечества. Но и в области чистой науки, в области естественной философии Фарадей приобрел не менее почетное имя. Благодаря ему мы теперь имеем целый ряд строго установленных фактов, точно обоснованных понятий относительно сил, действующих в природе. Основное понятие о единстве сил в значительной мере установилось благодаря трудам Фарадея. Как человек опыта, он никогда не удовлетворялся обобщениями, пока они не были подтверждены точными опытами; но если опыт давал фактические основания для обобщений, Фарадей делал все вытекавшие из последних выводы и считал их не подлежащими сомнению, как бы они ни противоречили установившимся взглядам. В 1833 году, закончив фактические работы в области электрической индукции, Фарадей ставит себе вопрос: действительно ли открытая им форма проявления энергии – электричество? Действительно ли сила, проявляемая обыкновенными электрическими машинами (с кругом), вольтовым столбом, электрическими угрями и скатами, магнитоэлектрическими и термоэлектрическими приборами, – тождественна, является одной и той же силою? Для всякого другого в этом не могло бы быть сомнения; но для Фарадея нужна была уверенность, основанная на фактах, не оставлявших места сомнению. Он проделал ряд опытов по превращению одной формы проявления электрической энергии в другую и, таким образом, опытным путем доказал тождество электричества во всех вышеупомянутых его проявлениях. А признав это тождество, Фарадей, уже не колеблясь, сделал вывод, что разные формы проявления электрической энергии соизмеримы, то есть что можно найти общую меру для определения количества электричества во всяких формах его проявления, как бы различны они ни были. Прежде всего, он установил различие напряженности электричества от его количества. Если сделать двадцать оборотов круга электрической машины и зарядить одну лейденскую банку, то в нее поступит количество электричества, соответствующее именно 20 оборотам машины; если затем новыми 20 оборотами машины зарядить 10 банок, то, очевидно, в последние поступит то же самое количество электричества. Это подтверждается и тем, что стрелка гальванометра испытывает одинаковое отклонение как от одной лейденской банки, так и от 10, раз для заряжения в обоих случаях было употреблено одинаковое число оборотов электрической машины. Но напряжение электричества в первом случае будет в 10 раз сильнее, нежели во втором, так как электричество в последнем случае рассеяно на площади, в 10 раз большей, нежели в первом. Исходя из этих положений, Фарадей установил различие между электричеством, даваемым машинами путем трения, и гальваническим, являющимся результатом химических процессов: первое проявляется в незначительном количестве, но с сильным напряжением; второе, напротив, имеет слабое напряжение, но дает большое количество. Так, для того, чтобы разложить ничтожнейшее количество йодистого калия, который пропитывает пропускную бумагу, количество настолько ничтожное, что его можно измерить только по величине бурого пятна, получающегося при этом на бумаге, – необходим такой заряд электричества, вырабатывающегося путем трения, который может убить крысу и едва переносится человеком; между тем, то же количество упомянутого вещества разлагается столь слабым по напряженности гальваническим током, что действие его даже не ощущается нашими нервами. Для того, чтобы разложить один гран воды на водород и кислород, необходимо 800 тысяч разряжений лейденской банки большого размера; наоборот, химическое действие одного грана воды на четыре грана цинка в состоянии развить столько электричества, что его будет достаточно на большую грозу; в то же время разряжение уже одной большой лейденской банки дает молнию, а для получения ничтожнейшей искры от гальванического тока необходимо громаднейшее множество гальванических элементов. В таком обратном отношении находятся количество и напряжение в электричествах, получаемых путем трения и путем химических процессов. Все это теперь азбучные истины в учении об электричестве, но эти истины были установлены именно Фарадеем, и именно благодаря его работам в этом направлении сделалось возможным производить те точные измерения силы электрической энергии, которыми пользуется современная электротехника.
Покончив с этими вопросами, Фарадей переходит к изучению явления прохождения электрического тока и останавливается на гальваническом токе как на более удобном для изучения. В работах, предпринятых для исследования явления прохождения тока, Фарадей наталкивается на тот любопытный факт, что ток проходит через воду, но не проходит через лед. Почему это? Разве лед и вода – не одно и то же вещество? Ответ дан Фарадеем в следующей форме: жидкое состояние позволяет молекулам воды принимать направление линий поляризации, а неподвижность твердого состояния не допускает подобной расстановки; между тем, это полярное распределение должно предшествовать разложению, разложение же постоянно сопровождает прохождение тока. Но так ли это? Если это справедливо, то, очевидно, прохождение тока через всякую жидкость должно сопровождаться разложением. Фарадей начинает производить опыты над целым рядом веществ – окисей, хлористых, йодистых и сернистых соединений и солей – и находит, что все они не проводят ток в твердом состоянии и проводят в жидком, причем в этом последнем случае непременно разлагаются. Отсюда устанавливается тот закон электрической проводимости, что ни один след электричества не может пройти жидкую массу, не произведя разложения, соответствующего своей силе.
Указанные работы привели Фарадея к области электрохимии, которою он и занялся с тем большим увлечением, что химия всегда была, как мы знаем, его любимою наукою. И в этой области Фарадей, по своему обыкновению, ставит перед собой коренные вопросы и делает открытия, чрезвычайно расширяющие круг наших знаний и понимание явлений данного рода. Он спросил себя: почему разложение непременно должно сопровождать прохождение тока через жидкость? Ранее Фарадея полагали, что так называемые полюсы, то есть те поверхности, с которых ток входит в жидкость, производят электрическое притяжение на составные части жидкости и их разъединяют, почему одно из составных веществ отлагается на одном полюсе, а другое – на другом (например, кислород и водород при разложении воды). Фарадей на первых же порах своих занятий в области электрохимии увидел ошибочность такого воззрения
Сам Фарадей сознавал неудовлетворительность своих соображений о причине электрохимического разложения и, по-видимому, чувствуя некоторую досаду на неуспех своей попытки открыть тайну одного из чудеснейших явлений, на время оставил свои занятия электрохимией. Результатом этого перерыва явилась работа, посвященная свойству некоторых металлов и других твердых тел содействовать соединению газов. В этой области Фарадей не являлся новатором, так как некоторые относящиеся сюда факты были известны и до него (например, свойства губчатой платины вызывают соединение кислорода с водородом, на чем основано известное “водородное огниво”); но Фарадей значительно увеличил число известных фактов из этой области и первый дал научное объяснение этому явлению.
После этой работы Фарадей снова обращается к электрохимии. Если нельзя объяснить сущность электрохимического разложения, то необходимо, по крайней мере, выяснить законы этого явления – такова задача, которую ставит себе Фарадей на этот раз и блистательно разрешает ее. Прежде всего, Фарадей радикально изменил терминологию электрохимических явлений, сложившуюся под влиянием неправильных воззрений, а потому вводившую в заблуждения. Он заменил название полюсы для концов гальванической пары новым словом электроды, ввиду того, что со словом полюсы связывалось понятие о силе притяжения, которое, как указано выше, совершенно отсутствует при электрохимическом разложении. Затем он назвал положительный электрод анодом, а отрицательный – катодом. Вещество, способное разлагаться электрическим током, Фарадей назвал электролитом, а сам акт разложения – электролизом. Все эти термины вошли в научный язык.
Покончив с терминологией, Фарадей приступил к изучению законов электрохимических явлений. Первый закон, установленный Фарадеем, состоит в том, что количество электрохимического действия не зависит ни от величины электродов, ни от напряженности тока, ни от крепости разлагаемого раствора, а единственно от количества электричества, проходящего в цепи; иначе говоря, количество электричества необходимо пропорционально количеству химического действия. Закон этот выведен Фарадеем из бесчисленного множества опытов, условия которых он разнообразил до бесконечности. Он ставил на пути одного и того же тока ряд сосудов с подкисленной водой, в которые были опущены электроды самой разнообразной формы и величины, – и количество газов, являвшихся результатом разложения воды, оказывалось во всех сосудах одинаковым. Затем он наполнял свою батарею то крепкой кислотой, то слабой, употреблял батарею то из 5 пар, то из 50-ти, – то есть резко изменял напряженность тока, – и оказывалось, что раз ток проходил ряд одинаковых сосудов и действовал на жидкость одно и то же время, количество продуктов разложения оказывалось всегда одно и то же. Далее Фарадей пропускал ток через ряд сосудов, содержавших смесь воды с серной кислотой в разных пропорциях, и опять во всех сосудах оказывалось одинаковое количество газов, явившихся продуктом разложения. На этом-то законе пропорциональности количества химического действия количеству электричества Фарадей построил знаменитый вольтметр — прибор, измеряющий количество динамического электричества по количеству разложенной подкисленной воды.
Второй, еще более важный закон электрохимического действия, установленный Фарадеем, состоит в том, что количество электричества, необходимое для разложения различных веществ, всегда обратно пропорционально атомному весу вещества или, выражаясь иначе, для разложения молекулы (частицы) какого бы то ни было вещества требуется всегда одно и то же количество электричества. Фарадей пришел к этому закону путем следующих опытов. Он растворил хлористое олово и пропустил через него ток; тот же ток проходил через вольтметр с подкисленной водой. Ток разлагал хлористое олово в растворе и воду в вольтметре. Определив количества хлористого олова и воды, разложенных одним и тем же током в одно и то же время, Фарадей нашел, что эти количества относятся друг к другу так же, как атомные веса молекул хлористого олова и воды. Повторив этот опыт с самыми разнообразными веществами, Фарадей всегда находил один и тот же результат, то есть всегда количества разложенных одним током веществ были пропорциональны атомным весам молекул этих веществ (то есть суммам атомных весов элементов, из которых данные вещества состоят). Так, в то время как атомный вес воды 9 (водород = 1 и кислород = 8, а в сумме = 9), а хлористого олова 58, то количества разлагаемых одним и тем же током воды и хлористого олова всегда будут относиться между собою, как 9 и 58. Основываясь на этом законе, можно всегда, измерив количество электричества в данном токе при помощи вольтметра, определить с точностью количество всякого вещества, которое этот ток может разложить в определенное время.
Работая над основными вопросами электрохимии, Фарадей не мог не остановиться на занимавшем тогда умы физиков и возбуждавшем горячие споры вопросе об источнике силы в вольтовом столбе. Изучение этого вопроса Фарадеем не только дало его решение, но и привело Фарадея к установлению основного закона силы, легшего в основание современного воззрения на единство сил природы. Вольтов столб, как известно, состоит из чередующихся медных и цинковых кружков, разъединенных суконками, смоченными подкисленной водой. В чем же заключается причина возбуждающегося в этом снаряде электрического тока, который затем может дать свет (путем накаливания угля или проволоки), теплоту и движение? Вольт полагал, что причина эта состоит в простом соприкосновении металлов в столбе через смоченный проводник. По этому воззрению выходило, что сила, развивающаяся в вольтовом столбе, образуется, собственно говоря, из ничего. Как ни странным кажется нам это воззрение теперь, но в то время оно было широко распространено, в особенности среди немецких ученых, и поддерживалось отсутствием заметного взаимодействия веществ, входящих в состав вольтова столба. Когда над этим вопросом стал работать Фарадей, против теории прикосновения раздавались уже многие голоса, но они не могли выставить против своих противников точных исследований. Фарадей решил бесповоротно вопрос посредством удачно скомбинированных опытов, в каковом отношении он не имел соперников. Он употребил для смачивания разделяющего медные и цинковые кружки проводника такие жидкости, которые были способны проводить самое слабое электричество, но которые не оказывали никакого химического воздействия на медь и цинк: в этом случае ток не обнаруживался. Наоборот, когда к подобной нейтральной жидкости примешивалось хотя бы самое ничтожное количество жидкости, способной химически воздействовать на цинк и медь, ток немедленно появлялся. Таким образом, было точно установлено, что причина возбуждения тока в вольтовом столбе – не соприкосновение металлов, а химический процесс, вызываемый действием на цинк и медь жидкости (обыкновенно серной кислоты), пропитывающей ткань, разделяющую цинковые и медные кружки в вольтовом столбе.