Механика от античности до наших дней
Шрифт:
В 1900 г. Ляпунов был избран членом-корреспондентом Академии наук, а в конце 1901 г. — академиком по кафедре прикладной математики, которая оставалась незанятой с 1894 г., после смерти Чебышева. В 1902 г. Ляпунов переехал в Петербург. Здесь он уже не преподавал, а целиком отдался научной работе. Он возобновил занятия фигурами равновесия жидкости и их приложениями к теории фигур небесных тел. В этой области ему принадлежат исключительно глубокие открытия.
Летом 1917 г. в связи с болезнью жены Ляпунов переехал в Одессу. В сентябре следующего года он начал в Одесском университете чтение курса «О форме небесных тел». Этот курс ему закончить не удалось: 3 ноября 1918 г. он скончался.
Научные заслуги Ляпунова были широко оценены на родине и за рубежом. Он был избран почетным членом многих русских университетов, членом-корреспондентом Парижской академии наук, иностранным членом Римской академии наук и т. д.
Обратимся к проблеме
В механических задачах, как правило, для упрощения анализа приходится пренебрегать влиянием некоторых факторов, пренебрегать силами, действие которых мало по сравнению с основными силами, определяющими движение. Однако в ряде случаев эти хотя бы и незначительные силы, действуя достаточно долго или возобновляясь периодически, могут частично и даже полностью изменить характер первоначального движения. Таким образом, это движение окажется неустойчивым.
Если точное решение задачи получено в конечном виде, можно судить об устойчивости или неустойчивости движения. Но не всегда такое решение можно найти. Отсюда вытекает необходимость найти метод, позволяющий, не решая полностью уравнений движения, определять, будет ли данное движение устойчивым или нет. Проблема устойчивости была поставлена в XVIII в. в связи с исследованием проблемы устойчивости Солнечной системы. Если пренебречь взаимными притяжениями планет и считать, что планеты притягиваются только Солнцем, то аналитическая механика дает однозначное решение, полностью определяющее основную траекторию движения планеты. Однако в действительности на каждую планету кроме силы притяжения Солнца действуют также силы притяжения других планет, которые возмущают движение рассматриваемой планеты по найденной основной орбите. Влияние этих возмущений может накапливаться и с течением времени полностью разрушить основное движение. Исследуя этот вопрос, Лаплас и Лагранж пришли к выводу, что для Солнечной системы возмущения больших полуосей и эксцентриситетов орбит не возрастают монотонно с течением времени, но периодически колеблются, достигая максимального и минимального значений; следовательно, движение больших планет Солнечной системы устойчиво. Но эта устойчивость не всегда имеет место (например, движение частиц в кольцах Сатурна). Как известно, кольца Сатурна состоят из частиц, вращающихся вокруг планеты. В этих кольцах на некоторых расстояниях от центра планеты имеются щели, разделяющие их на ряд концентрических колец и представляющие собой области, где движение находившихся там некогда частиц было неустойчиво.
Весьма существенное значение вопрос об устойчивости движения имеет в баллистике при исследовании законов движения продолговатого снаряда. Задача об устойчивости движения возникла также в связи с развитием машиностроения в XIX в. Решение вопроса об устойчивости движения важно для определения режима работы машин и механизмов.
Общая задача об устойчивости движения сводится к исследованию систем дифференциальных уравнений вида
где Xk — заданные функции времени t и xk, при достаточно малых xk аналитические; для простоты можно принять, что эти функции обращаются в нуль, когда все xk равны нулю. Если во все время движения, т. е. при любых t, функции xk, зависящие от t, остаются меньше заранее данных сколь угодно малых положительных величин, движение называется устойчивым (по Ляпунову). Если система уравнений интегрируется в конечном виде, то по найденному решению можно в принципе судить об устойчивости или неустойчивости движения. Но такое интегрирование удается сравнительно редко, и требуется дать ответ, не имея точного решения системы уравнений, определяющей движение системы.
Ученые издавна применяли в этом случае приближенные методы решения, причем ограничивались так называемым первым приближением, отбрасывая в степенных рядах, выражающих функции Xk, все члены выше первой степени относительно xk и исследуя возникающую при этом систему линейных уравнений. Однако движение, устойчивое в первом приближении, нередко бывает на самом деле неустойчивым. Привлечение второго (или даже более высокого) приближения также, вообще говоря, недостаточно. Возникал вопрос: когда первое приближение
Ляпунов дал строгое решение вопроса о том, когда при исследовании задачи об устойчивости движения можно ограничиваться рассмотрением первого приближения. Он установил особые случаи, при которых использование первого приближения не решает задачу об устойчивости. Большой заслугой его явилось подробное исследование уравнений, в которых коэффициентами являются периодические функции с одним и тем же периодом. Он указал признаки устойчивости и неустойчивости для периодических движений. Отметим еще, что он впервые доказал теорему, согласно которой положение равновесия при некоторых дополнительных условиях неустойчиво, если в положении равновесия потенциальная энергия не минимальна.
После докторской диссертации Ляпунов напечатал еще ряд работ в дополнение к ней, на которых мы останавливаться не будем.
Ценность трудов Ляпунова по теории устойчивости движения не только в непосредственно полученных им результатах, но и в разработке новых оригинальных математических приемов изучения дифференциальных уравнений. Последующие исследования по теории устойчивости в значительной мере опирались на идеи и методы Ляпунова. Его докторская диссертация была издана на французском языке в 1907 г. О значении этого труда в наше время свидетельствуют четыре переиздания его на русском языке после 1935 г. и перепечатка французского перевода в США в 1947 г.
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ
На рубеже XIX—XX вв. в России была создана новая область механики, первые стимулы к разработке которой возникли в теоретическом естествознании и которая приобрела исключительно важное значение в технике середины XX в. Это динамика тел переменной массы И.В. Мещерского.
Иван Всеволодович Мещерский (1859—1935) родился в Архангельске. Учился он сначала в приходском училище, затем в уездном. В 1871 г. поступил в Архангельскую гимназию, курс которой окончил в 1878 г. с золотой медалью, причем в аттестате была отмечена «любознательность весьма похвальная, и особенно к древним языкам и математике». В той: же году И.В. Мещерский поступил на математическое отделение физико-математического факультета Петербургского университета. Это было время расцвета Петербургской математической школы, созданной П.Л. Чебышевым. Здесь он с восторгом слушал лекции как самого П.Л. Чебышева, так и известных в то время профессоров А.Н. Коркина (1837— 1908), К.П. Поссе (1847—1928) и многих других.
В студенческие годы Мещерский с особым интересом занимался механикой, которую читали Д.К. Бобылев и Н.С. Будаев. Влияние их сказалось на всей дальнейшей научной деятельности И.В. Мещерского. Особенно значительную роль в его жизни сыграл Д.К. Бобылев, автор крупных работ по гидродинамике и замечательный педагог. По окончании университета в 1882 г. Мещерский был оставлен при университете для подготовки к профессорскому званию.
Советский ученый в области механики, основоположник механики тел переменной массы. Работы И.В. Мещерского явились основой для решения многих проблем реактивной техники
В 1889 г. И.В. Мещерский выдержал при Петербургском университете экзамены на ученую степень магистра прикладной математики и получил право на чтение лекций. В ноябре 1890 г. И.В. Мещерский начал преподавание в Петербургском университете в качестве приват-доцента. В 1891 г. он получил кафедру механики на Петербургских высших женских курсах, которую занимал до 1919 г., т. е. времени слияния этих курсов с университетом. В 1897 г. Мещерский успешно защитил в Петербургском университете диссертацию на тему «Динамика точки переменной массы», представленную им для получения степени магистра прикладной математики.