Металл века
Шрифт:
Титан тверже железа, его ни в коем случае нельзя назвать мягким металлом. Алюминий, мы это прекрасно знаем, тоже не так уж и мягок. Так вот титан в двенадцать раз тверже, чем
алюминий, и однако Однако твердость его далеко не всегда
достаточна. Особенно это проявляется в тех случаях, когда нужно получить острую кромку, которая обладала бы режущими свойствами.
На одном из предприятий была выпущена опытная партия комплектов столовых приборов. Но когда хозяйки пустили в ход кухонные ножи с лезвиями из титана, разочарованию не было границ: ножи были тупыми
А в том, что для ножей титан — недостаточно твердый металл. Их обычно делают из особотвердой инструментальной стали, которая гораздо тверже титана. Поэтому затачивать ножи из титана — пустая затея. Вот почему в комплектах хирургических инструментов из титановых сплавов лезвия скальпелей сделаны не из титана, а из стали. В титановых же столовых наборах только вилки и ложки пригодны к употреблению, а что касается ножей, то они выполняют скорее декоративные, чем непосредственно режущие функции.
Титан имеет и другую характерную особенность, которая в еще большей мере препятствует широкому его использованию в трущихся узлах и деталях. Речь пойдет о склонности титана к налипанию, поверхностному схватыванию с другими металлами, в результате чего детали очень быстро выходят из строя.
При трении титан как бы прикипает к поверхности других металлов. Это приводит к тому, что металлические частицы отрываются от основной массы детали, причем если титан соприкасается с металлами, более твердыми, чем он, то вскоре они оказываются покрытыми слоем растертых частиц титана. И наоборот, если металлы более мягкие, то их частицы отрываются и прирастают к титану. Как в том, так и в другом случае, итог малоутешителен: детали как бы съедают одна другую.
Чтобы при трении изделия не разрушались, обычно применяют смазку, которая в значительной мере ослабляет трение. Это — обычно. Но титан — металл необычный, парадоксальный. Вот и при смазке он нисколько не изменяет своих свойств по части трения и налипания — не помогают масла и жиры, ни мыла, ни спирты и кислоты, ни другие обычно с успехом применяемые смазочные материалы. Даже твердая смазка — и та недостаточно эффективна. Лишь только графит и сернистый молибден оказываются более или менее пригодными смазочными веществами, но лишь в течение непродолжительного времени.
И все же титановые сплавы используют для изготовления трущихся деталей. Благодаря различным трудоемким методам обработки повышается твердость поверхности и намного уменьшается склонность металла к налипанию и задирам, что уменьшает износ деталей.
По склонности к налипанию в сомнительных случаях можно очень точно определить — титан ли тот металл, который у вас в руках. Если по мокрому стеклу провести куском металла и после этого на стекле останется серо-белая черта, значит, это действительно титан. Проба на искру также позволяет легко узнать его среди других металлов: при соприкосновении с абразивным кругом титан испускает пучок белых блестящих искр.
Как уже известно, титан противостоит действию серной кислоты только в том случае, если она очень разбавлена и ее концентрация не превышает 5 процентов. Чем выше концентрация, тем интенсивнее коррозия. Но как вы думаете, когда титан разрушается сильнее: находясь в 40-процентной или же в 60-процентной серной кислоте? Вы, вероятно, решите, что в более концентрированном растворе титан будет и корродировать болев интенсивно. Но в действительности все наоборот. Сначала, правда, титан в 60-процентной кислоте разрушается сильнее, но через несколько часов коррозия его почти совершенно прекращается.
Титан беззащитен против галогенов — фтора, иода, брома, хлора. Погруженный в жидкий бром, металл уже через 15 минут вспыхивает и сгорает дотла. То же самое происходит с титаном и в сухом газообразном хлоре с той, правда, разницей, что воспламенение наступает несколько позже — через сутки. Но если в хлоре будет совершенно мизерное количество влаги (хотя бы одна частичка воды на 20000 частей хлора), поведение металла меняется самым разительным образом и из совершенно нестойкого материала он делается абсолютно стойким в этой среде. Что и говорить, действительно, странный, парадоксальный металл!
Металл, который внезапно вспыхивает и горит так яростно, что его погасить почти невозможно, — успешно используют для противопожарных переборок. Металл, который может взорваться, — широко применяют в ракетных и самолетных двигателях.
А стоит ли того большого внимания, которое ему уделяют, такой капризный металл с целой массой недостатков? Он легкий, да, этого не отнимешь, но ведь алюминий гораздо легче, а о магнии и говорить не приходится... Что же касается прочности, то специальные стали гораздо прочнее его. И по стойкости против коррозии он тоже не чемпион: некоторые металлы превосходят его, причем металлы эти не благородные, а (хотя и редкие, и более дорогие) такие же рядовые, как он, — тантал, к примеру, или цирконий.
Все это так. Но, уступая некоторым другим металлам в легкости, прочности, стойкости против коррозии, титан остается по-прежнему уникальным материалом. Ведь он — единственный металл, сочетающий в себе все перечисленные свойства и тем самым как бы работающий за троих. Именно такое сочетание оправдывает все его недостатки, с избытком компенсируя затраты и трудности, связанные с его производством и применением.
Глава 5. СТРАТЕГИЧЕСКИЙ МЕТАЛЛ
ТИТАНОВЫЙ БУМ
Тот, кто видел фильм кинорежиссера Михаила Ромма ”9 дней одного года”, вряд ли когда-либо забудет эту сцену. Бетонный коридор, вдоль которого тянутся бесчисленные сгустки проводов. Этот длинный коридор, или туннель, символизирующий долгий путь поисков истины, как бы проходит через весь кинофильм. По коридору к вам приближается группа сотрудников ядерного института. Их несколько, но спорят двое:
Когда-то война не нуждалась в науке, а сейчас она кормит ее, ибо стала нуждаться в ней, — говорит Николай Иванович.