Метрология, стандартизация и сертификация: конспект лекций
Шрифт:
В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. К. Гаусс считал свою систему единиц абсолютной системой. С развитием цивилизации и научно—технического прогресса возникли еще ряд систем единиц физических величин, основанием для которых служит принцип системы Гаусса. Все эти системы построены как метрические, однако их отличием служат различные основные единицы. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:
1) система СГС (1881 г.) или Система
2) система МКГСС (конец XIX в.), использующая первоначально килограмм как единицу веса, а впоследствии как единицу силы, что вызвало создание системы единиц физических величин, основными единицами которой стали три физических единицы: метр как единица длины, килограмм—сила как единица силы и секунда как единица времени;
3) система МКСА (1901 г.), основы которой были созданы итальянским ученым Дж. Джорджи, который предложил в качестве единиц системы МКСА метр, килограмм, секунду и ампер.
На сегодняшний день в мировой науке существует неисчислимое количество всевозможных систем единиц физических величин, а также немало так называемых внесистемных единиц. Это, конечно, приводит к определенным неудобствам при вычислениях, вынуждая прибегать к пересчету при переводе физических величин из одной системы единиц в другую. Сложилась ситуация, при которой возникла серьезная необходимость унификации единиц измерения. Требовалось создать такую систему единиц физических величин, которая подходила бы для большинства различных отраслей области измерений. Причем в роли главного акцента должен был звучать принцип когерентности, подразумевающий под собой, что единица коэффициента пропорциональности равна в уравнениях связи между физическими величинами. Подобный проект был создан в 1954 г. комиссией по разработке единой Международной системы единиц. Он носил название «проект Международной системы единиц» и был в конце концов утвержден Генеральной конференцией по мерам и весам. Таким образом, система, основанная на семи основных единицах, стала называться Международной системой единиц, или сокращенно СИ, что происходит от аббревиатуры французского наименования «Systeme International* (SI). Международная система единиц, или сокращенно СИ, содержит семь основных, две дополнительных, а также несколько внесистемных, логарифмических единиц измерения, что можно видеть в таблице 1.
Таблица 1
Международная система единиц или СИ
Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:
1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;
2) килограмм считается приравненным к существующему международному прототипу килограмма;
3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133;
4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума;
5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды;
6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в C 12 массой 0,012 кг.
Кроме того, Международная система
1) за логарифмическую единицу принята десятая часть бела, децибел (дБ);
2) диоптрия – сила света для оптических приборов;
3) реактивная мощность – Вар (ВА);
4) астрономическая единица (а. е.) – 149,6 млн км;
5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год;
6) вместимость – литр;
7) площадь – гектар (га).
Кроме того, логарифмические единицы традиционно делят на абсолютные и относительные. Первые абсолютные логарифмические единицы – это десятичный логарифм соотношения физической величины и нормированного значения Относительная логарифмическая единица образуется как десятичный логарифм отношения любых двух однородных величин. Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной.
7. Физические величины и измерения
Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан.
У физических величин есть качественные и количественные характеристики.
Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*.
Таким образом, размерность длины, массы и времени:
dim*l = L,
dim*m = M,
dim*t = T.
Для производной величины размерность выражается посредством размерности основных величин и степенного одночлена:
dim*Y = L k x M 1 x T m,
где k, I, m– показатели степени размерности основных величин.
Показатель степени размерности может принимать различные значения и разные знаки, может быть как целым, так и дробным, может принимать значение ноль. Если при определении размерности производной величины все показатели степени размерности равны нулю, то основание степени, соответственно, принимает значение единицы, таким образом, величина является безразмерной.
Размерность производной величины может также определяться как отношение одноименных величин, тогда величина является относительной. Размерность относительной величины может также быть логарифмической.