Млечный Путь, 2012 №02
Шрифт:
Ковер Серпиньского. Алгоритм его построения таков: берется квадрат, тремя горизонтальными и тремя вертикальными прямыми делится на девять равных квадратов и центральный удаляется (вырезается). На следующем шаге точно так же поступают с оставшимися восемью квадратами. В результате, при бесконечном числе итераций, из квадратной плоскости получается фантастический ковер, состоящий из бесчисленного количества квадратных дырок, площадь основы которого стремится к нулю.
Здесь не место описывать и разъяснять подробно новую «парадигму фракталов». В том смысле, который отражает взгляд Р. И. Пименова, можно характеризовать фрактал как не обязательно гладкое самоподобное
Для тех, кто не знаком с математическими описаниями фракталов, лучше всего будет набрать это слово в любом интернет-поисковике и любоваться неожиданными красотами графического выражения этих «„заумных“ математических конструктов».
Например, таким, какой изображен на первой странице обложки журнала.
Для нас сейчас важно осознать, что с появлением фракталов укрепилось представление о том, что дифференциальные уравнения — не универсальное средство описания физической реальности! Загадочное свойство «фрактальной размерности» реальных объектов никак не соответствует ни математическому, ни «житейскому» пониманию гладкости пространства.
С появлением фракталов стало ясно, что ни уравнение Шредингера, ни уравнение Эйнштейна, казавшиеся универсальными инструментами, пригодными в принципе для описания любой физической реальности, как раз в принципе не только для любой, но и для нашей таковыми не являются. Не все гладко в нашем мире!
Мы выбираем!
Некоторое время можно было надеяться, что все-таки большинство известных физических явлений хотя бы приблизительно можно описать с помощью дифференциальных уравнений.
Анализ, выполненный математиками, показал, что в случаях размерностей 1,2,3 и даже отчасти 5 и 6, это соответствует математической реальности. И, поскольку мы считаем наше физическое пространство трехмерным, то его характеристика, данная Б. Грином, вполне корректна.
Но, как сообщает Р. Пименов, «…Обнаружилось, что в размерности четыре ситуация совершенно иная. В той самой размерности, которая нужнее всего физике. Ибо физике нужна еще координата t сверх координат (x, y, z): без t вообще о детерминации и говорить нелепо. Прежде всего, оказалось, что существуют такие 4-многообразия, на которых НЕЛЬЗЯ ВВЕСТИ НИКАКОЙ ГЛАДКОСТИ… Обнаружено, что на R4 существует несколько… различных гладкостей…»
Это утверждение Револьта Ивановича хорошо иллюстрирует доказанная в 1976 г. американскими математиками Кеннетом Аппелем и Вольфгангом Хакеном теорема о том, что ЧЕТЫРЬМЯ различными красками можно раскрасить бесконечное число различных карт. А карта — это как раз топологическое многообразие. Как подсказал мне математик и блестящий толкователь «математических премудростей» А. В. Коганов, которому я признателен за весьма полезные
Более того! Математика утверждает, как пишет Р. И. Пименов, что «… Даже в тех случаях, когда гладкость существует, она НЕ ЕДИНСТВЕННА для размерностей, начиная с 4… Объекты для разных гладкостей устроены существенно по-иному, они не изоморфны, значит, надо уметь ВЫБИРАТЬ СРЕДИ ЭТИХ ОБЪЕКТОВ. А мы не умеем. Нам не было нужды прежде проводить такой выбор, и мы не научились.
Может быть, мы научимся справляться с релятивностью гладкости. Не знаю. Я ведь пишу не о будущем, а о прошлом и о настоящем. В настоящем мы не умеем, в прошлом мы и не подозревали, что должны уметь».
Вот ключевая мысль пименовского эссе! Здесь Револьт Иванович обращает внимание на то, что разные гладкости не изоморфны.
Изоморфизм — «одинаковость формы». А если нет изоморфизма, значит, пространства имеют разные структуры, а неизоморфные объекты и «устроены по-разному».
Так, бурные политические события на рубеже тысячелетий привели к тому, что политические карты мира 1990 и 2011 гг. топологически совершенно разные объекты!
Почти одновременно с Р. И. Пименовым на экзотические гладкости и их применение к теории пространства-времени в 1987 году обратил внимание и А. К. Гуц, который тогда же обсуждал эти проблемы с Р. И. Пименовым.
Итак, даже в «классических случаях», описываемых «нашим» четырехмерным пространством-временем, мы, оказывается, каким-то образом ВЫБИРАЕМ среди множества РЕАЛЬНЫХ форм существования объектов только одну и живем в этом своем выборе!
Каков механизм этого выбора, как конкретно описать его математически — это и есть «прикладные вопросы», над которыми нужно работать. При этом, как заметил А. К. Гуц, «главная трудность состоит в том, что сама гладкость как-то не описывается без гладкости. Чего-то мы пока не понимаем».
Но вывод из «абстрактно-математических» результатов дифференциальной топологии вполне очевиден: физическое многомирие с математической точки зрения возможно.
Это ясно и самому Р. Пименову, который так говорит о мировоззренческих следствиях своего анализа применимости дифференциальных уравнений для описания реальности: «А это означает, что все, что писалось о детерминизме в XVIII–XX веках, НАДО ЗАЧЕРКНУТЬ. Ведь если у нас нет критерия „абсолютно различить“ гладкую траекторию от негладкой… то спрашивается, по каким же траекториям переносится „настоящее“ физическое воздействие?.. Вся идеология использования дифференциальных уравнений для детерминации будущего на основе настоящего и прошлого рушится из-за релятивизации гладкости… Детерминизм не был „выведен логически“ или „доказан математически“. Мы всего лишь ВЕРИЛИ В ДЕТЕРМИНИЗМ».
Со времен Лапласа принято считать, что у всякого следствия есть однозначная причина. «Классический математик» переводит это на математический язык — у любой функции есть дифференциал. В этом и состоит сущность лапласовского детерминизма.
После осознания сказанного Р. И. Пименовым, этот детерминизм, как мировоззренческий принцип, перестает быть всеобщим.
И круг задач, которые подчиняются парадигме дифференциальных уравнений, уже не всеобъемлющ. А среди первых разделов физики, актуальные интересы которых выходят за его пределы, следует указать на современную космологию.