Монтаж и сервис оборудования по использованию возобновляемых источников энергии Том 2 Монтаж и сервис гелио коллекторов
Шрифт:
В перьевых абсорберах к отдельным пластинам прикреплена или приварена трубка. Трубки в таких абсорберах соединяются между собой в виде арфы или еще это соединение называют коллекторным типом. В цельно листовых абсорберах система распределения теплоносителя может быть различной. Это могут быть трубка в виде меандра или же трубки коллекторного типа, а также может быть применен метод штамповки. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность.
Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%. Стандартным решением повышения эффективности коллектора стало применение абсорбера
Рис.10.Варианты соединение трубок в плоских коллекторах
Поглощающая способность обозначается символом альфа «». Излучающая способность – символ эпсилон «». Свойства некоторых селективных покрытий представлены в таблице 1.
Оптический КПД солнечного коллектора определяет, какой процент излучения, попадает через прозрачное покрытие на коллектор и поглощается абсорбером. Данный показатель полностью характеризует применяемые материалы защитного прозрачного, материала и покрытия абсорбера, не зависит от климатических факторов и конструктивных и тепловых параметров гелио системы. Наилучшие показатели оптического КПД современных солнечных коллекторов составляют 0,92–0,94.
Мгновенный КПД можно определить по формуле:
Параметры, влияющие на КПД солнечного коллектора:
– интенсивность солнечной энергии;
– температура наружного воздуха;
– конструктивные характеристики солнечного коллектора;
– свойства поверхности абсорбера – материал и толщина листа, – толщина,
– коэффициент теплопроводности тепловой изоляции,
– шаг труб;
– рабочие параметры всей гелиосистемы (расход теплоносителя и его температура на входе).
При сравнении различных материалов, используемых для изготовления абсорбера, – меди, алюминия, стали, пластмассы – установлено, что с увеличением произведения толщины листа на его коэффициент теплопроводности, значение КПД коллектора возрастает.
Расстояние между трубками в плоском абсорбере обычно меняется от 50 до 150 миллиметров, при этом, его КПД меняется от 0,989 до 0,948 если он выполнен из меди, от 0,88 до 0,934, для алюминия и 0.984 до 0,819 для стали. Уменьшение диаметра трубок снижает эффективность на 2–4 %.
Расстояние между трубками в плоском абсорбере обычно меняется от 50 до 150 миллиметров, при этом, его КПД меняется от 0,989 до 0,948 если он выполнен из меди, от 0,88 до 0,934, для алюминия и 0.984 до 0,819 для стали. Уменьшение диаметра трубок снижает эффективность на 2–4 %.
Очень большую роль в эффективности работы плоских солнечных коллекторов играют атмосферные факторы, так при уменьшении температуры окружающего воздуха с 25 до 10°С, КПД падает примерно на 25 %. При появлении облачности – в два раза, допустим интенсивность солнечного излучения упала с 1000 до 500 Вт/м^2, тогда коллектор площадью один
Таблица 1 Свойства селективных покрытий
Важным фактором также является качество селективной поверхности абсорбера. У лучших, показатель их эффективности составляет 0,96, в то время, как простая черная краска имеет данный показатель на уровне 0,5.
На рис.11 показаны зависимости мгновенного КПД закрытого плоского солнечного коллектора с высокоселективной поверхностью абсорбера от интенсивности солнечного потока (1000, 800, 500, 300 Вт/м^2, разности температур теплоносителя и окружающего воздуха, при наилучших показателях оптического КПД (0,82) и углу падения солнечных лучей перпендикулярно поверхности при коэффициенте потерь, равным 7 Вт/ м^2°С.
Для обеспечения простого и быстрого гидравлического подключения, например, гелиоколлектор Logasol SKN3.0, рис. 12, оснащен патрубками для шлангов.
Рис.11 График сравнения тепловой эффективности разных солнечных коллекторов при солнечном излучении мощностью 600 Вт/м^2: 1 – вакуумный коллектор (трубчатого типа); 2 – плоский солнечный коллектор (селективное покрытие); 3 – солнечный коллектор открытого типа
Рис.12 Гелиоколлектор SKN3.0-S–вертикальный, SKN3.0-w- горизонтальный
Гелиоколлекторы монтируются без применения специального инструмента с помощью ленточных пружинных хомутов, рассчитанных вместе с гелио коллекторами на температуру до +170°С и давление до 6 бар. Основные технические данные плоских гелиоколлекторов Logasol SKN3.0 представлены в таблице 2. Инертный газ, находящийся между абсорбером и стеклом, предотвращает тепловые потери. Благодаря герметичной конструкции покрытие абсорбера дополнительно защищено от таких внешних атмосферных воздействий как воздух, пыль или вредные вещества. Благодаря этому достигается продолжительный срок службы коллектора с высокой тепло производительностью. Изготовление абсорбера в форме двойного меандра позволяет осуществлять одностороннее подключение до 5 коллекторов в ряд. При больших размерах гелио коллекторного поля требуется чередование сторон подключения, чтобы обеспечить равномерное распределение потока жидкости-теплоносителя.
Таблица 2 Основные технические данные плоских гелиоколлекторов Logasol SKN3.0
Конструкция абсорбера в форме сдвоенного меандра способствует увеличению мощности коллекторов, обеспечивая турбулентное движение теплоносителя на всех участках. Также, за счет параллельного соединения двух меандров (змеевиков) в гелиоколлекторе достигается низкий уровень потерь давления. Сборный трубопровод обратного потока расположен в нижней части гелиоколлектора. Поэтому в периоды стагнации горячий теплоноситель может быстрее пройти через гелиоколлектор.