Мозг экономичный
Шрифт:
Какие преобразования должна претерпеть наша простая аналоговая система, чтобы ответить на потребность в переработке большего объёма информации - хорошей и разной? Что, если нашему существу уже недостаточно информации об освещённости, и пришла пора расширить набор источников сведений об окружающем мире? Примем, что информация об освещённости, и стремление к свету сохраняют своё значение, и пока не нуждаются в усовершенствованиях.
Очевидно, что нужно добавлять новые, так или иначе специализированные блоки. Допустим, наш организм нужно дополнить функцией реагирования на вибрации. Тогда нужны датчики вибрации, какой-то узел их простейшей обработки (например, компаратор-определитель опасного
Остаётся один путь - добавить к уже существующей новую структуру. Важно для нас то, что эта система может быть изначально очень простой, и потому тоже может возникнуть посредством отбора спонтанных мутаций первоначальных простейших сущностей. Впрочем, возможен вариант спонтанного удвоения (о возможности которого мы говорили выше) структуры, отвечающей за фототаксис (целиком или частично), а затем медленно-пошаговое перепрофилирование одной из них в нужную нам систему реагирования на вибрации. Впрочем, принципиальной разницы между этими двумя путями нет - и тот, и другой возможен как результат отбора случайных мутаций - мелких простых шагов.
Если же мы захотим возложить дополнительные задачи на цифровой компьютер, то весьма вероятно, что нам не потребуется добавлять в него новые аппаратные блоки. Но обязательно потребуется добавлять новые управляющие коды в программу, управляющую его работой. И только в том случае, если эти коды, или данные перестанут помещаться в его памяти, нам потребуется что-то наращивать в смысле аппаратуры. Но именно наращивать, увеличивать объём уже существующей структуры. Каких-то специализированных блоков, кроме датчиков вибрации, не потребуется. Другими словами - как таковая, структура цифрового компьютера не изменится, и в этом - одно из основных промышленных достоинств цифровых компьютеров, обеспечивших им процветание в мире людей.
Структура же аналоговой системы, хотели бы мы этого изначально, или нет - сразу изменится. И вполне можно будет говорить об удвоении сложности. Ну вернее - это пока ещё не совсем сложность, но эти изменения открывают кое-какие перспективы. Общее-то количество блоков обработки информации возрастает, а стало быть, появляются возможности их использовать совместно, и даже возлагать на них задачи, которые они по отдельности решить не могут. Причём, для такого расширения функций, не потребуется вмешательства извне, оно может произойти и вполне спонтанно, о чём мы тут постоянно напоминаем.
Да, в случае построения очень сложной системы, "цифра" была бы намного экономичнее, но этой гипотетической системе надо как-то родиться! Ну если не рассматривать, конечно, участие в этом процессе другого, уже высокосложного существа. По мере роста сложности, аналоговая система вполне приближается в степени универсальности к цифровой, что мы видим на примерах нервных систем высших млекопитающих и птиц, но к рассматриваемой системе фототаксиса это не относится. Впрочем, даже сложная аналоговая система универсальна не так, как была бы универсальна аналогичная цифровая система; а как именно - мы узнаем далее.
Нет причин полагать, что принцип добавления новых структур
...эволюция часто происходит путем наваливания новых систем на крышу старых. Прекрасно описал эту аналогию нейрофизиолог Джон Оллман. Как-то он посетил электростанцию, где одновременно сосуществовали по меньшей мере три поколения технологий, прилаженных друг к другу. Новейшая компьютерная технология работала не сама по себе, а на службе у электронных ламп (наверное, образца 1940 года), которые в свою очередь управляли еще более старыми пневматическими механизмами, приводимыми в действие сжатым газом. Если бы инженеры станции могли позволить себе роскошь приостановить работу всей системы, без сомнения, они начали бы с нуля и избавились от устаревших систем разом. Но постоянная потребность в энергии препятствует такой решительной реконструкции.
Подобным образом живые существа постоянно должны выживать и воспроизводиться, что часто мешает эволюции строить по-настоящему оптимальные системы; эволюция не может "приостановить" жизнедеятельность своих созданий, как не могут этого сделать люди-инженеры, и в результате получаются такие нелепые конструкции, когда новую технологию наваливают на старую. Средний мозг человека, например, существует буквально поверх более древнего заднего мозга, а передний мозг надстроен на вершине их обоих...[Гари Маркус. Несовершенный человек. Случайность эволюции мозга и ее последствия.]
Итак, мозг живого существа, в своей первооснове, аналоговая система обработки информации, состоящая из совокупности более или менее специализированных блоков. Не приходится сомневаться в том - а порукой тому многочисленные примеры ныне здравствующих простейших живых организмов (типа гидр), что первоначальные варианты нервной системы были очень просты, и вполне подобны нашей гипотетической системе фототаксиса - то есть, были предназначены для решения узко-конкретных задач обеспечения жизнедеятельности, не предполагающих сложной обработки данных о внешней и внутренней среде и замысловатых поведенческих реакций. "Продвинутые" варианты нервных систем (не только млекопитающих с большим мозгом) уже могут оперировать кодами и символами (в чём можно усмотреть сходство с цифровыми компьютерами), но эта деятельность для них мало того, что вторична - она реализуется аналоговыми механизмами, которые не никак нельзя назвать "цифродробилками" - они не используют как таковых чисел в своей работе.
О "многоедином мозге"
В 1970-ч годах Полом Мак-Лином предложена концепция "триединого мозга", которая затем была популяризована Карлом Саганом в его книге "Драконы Эдема". Концепция предполагает наличие в человеческом мозге трёх, так называемых "нейрошасси", названных как "мозг рептилий", "мозг млекопитающих", и "мозг человека" (неокортекс). Утверждалось, что все эти шасси морфологически отграничены, и отвечают за различный уровень поведения; от примитивного (мозг рептилий) - до высокорассудочного (неокортекс).