Чтение онлайн

на главную - закладки

Жанры

Мозг и тело. Как ощущения влияют на наши чувства и эмоции
Шрифт:

Почему непосредственное соотнесение действий детей с содержанием истории так важно? По мнению Гленберга, корень «зла» – в слове «каждый»: детям бывает особенно сложно понять, что оно означает. Дело и вправду непростое: слово должно быть соотнесено с правильным набором объектов, а объекты из этого множества необходимо рассматривать как отдельные единицы. Прочитывая слово «каждый», недостаточно отметить про себя, что крокодилов на самом деле несколько. Читатель должен осознать, что имеются два крокодила и их кормят отдельно. Физические манипуляции, совершаемые с игрушечными рыбками и фигурками зверей, делают это очевидным, ведь ребенку нужно отсчитать положенное количество рыбок для каждого крокодила. Когда же дети не выполняют таких конкретных действий, они не получают наглядного представления о происходящем. Как показало исследование, проведенное Гленбергом, дети из «лего»-группы совершали ту же типичную ошибку: они отвечали, что бегемоты и крокодилы получили 11 рыбин, а не 22. Похоже, дети не осознавали, что слово «каждый» накладывает требование удвоить число 11 (рыбин),

поскольку в зоопарке есть два крокодила и два бегемота. Разыгрывая сюжет с подходящими пособиями, дети начинают понимать смысл слов, таких как «каждый».

Иначе говоря, не все виды двигательной активности одинаково полезны, но внимательно структурированный опыт взаимодействия действительно помогает детям лучше справляться с усвоением материала. Отсюда не следует делать вывод, что они должны ходить на уроки математики или чтения с коробками, полными игрушек. Гленберг и его коллеги доказали, что если дети будут представлять в своем воображении действия, о которых говорится в упражнении, это тоже пойдет на пользу обучению. Независимо от типа связи между словами и осуществляемым действием, если она устанавливается, то этой связью будет уже нетрудно воспользоваться.

Конечно, исследователи-когнитивисты отнюдь не первыми в ученом мире заговорили о пользе двигательной активности для обучения. Мария Монтессори, основоположник целого направления в педагогике, а также основатель международной организации, носящей сегодня ее имя, еще сто лет назад писала: «Одна из величайших ошибок нашего времени состоит в том, что мы думаем о движении как о чем-то оторванном от высших функций… Умственное развитие должно быть связано с движением и зависеть от него… При наблюдении за ребенком становится очевидным, что развитие разума происходит через движение… Разум и движение являются частями единого целого» {68} .

68

Montessori M. The Absorbent Mind. New York: Holt, 1967. Цит. по: Glenberg A. M., Jaworski B., Rischal M., Levin J. R. What Brains Are For: Action, Meaning, and Reading Comprehension // Reading Comprehension Strategies: Theories, Interventions, and Technologies / McNamara D. (ed.). – Mahwah, NJ: Lawrence Erlbaum, 2007. (Книга не раз переиздавалась на русском языке. В переводе цитата приводится по тексту: Монтессори М. Впитывающий разум ребенка. – М.: БФ «Волонтеры», 2009. – С. 160–161. Прим. пер.)

В школах Монтессори дети изучали алфавит, проводя ручками по шершавым буквам, и, как и малыши на уроках чтения у Гленберга, осваивали грамматику и лексику, разыгрывая предложения, которые учителя им читали, как маленькие пьесы. На протяжении многих десятилетий мейнстримовские образовательные системы игнорировали метод Монтессори, в котором акцент делался на динамизме образовательной среды. Однако новейшие исследования и открытия в области нейробиологии и психологии недвусмысленно показывают, насколько важно движение для понимания. Недавно проведенное исследование в области воплощенного познания дает нам возможность составить своеобразную дорожную карту реорганизации и структурирования образовательной деятельности таким образом, чтобы она действительно помогала детям учиться лучше. Мозг – не процессор для обработки абстрактной информации в отрыве от тела и среды. На него постоянно влияют движения тела.

* * *

На уроке математики под названием «Математический танец» люди двигаются по кругу под ритм, который отбивает стоящий в центре зала за барабанами-бонго ведущий. «Математический танец» представляет собой целую серию математических действий, выполняемых всем телом {69} . Его авторами являются хореограф Эрик Стерн и математик Карл Шеффер. «Многие люди, которые ненавидят математику – взрослые, дети, молодежь, – на самом деле просто теряются перед ней. А все потому, что их заваливают символами еще до того, как они успевают разобраться, что к чему, и ступить на твердую почву реального опыта» {70} , – объясняет Стерн. Для этого и разрабатывался «Математический танец» – чтобы дать людям физическое ощущение абстрактной идеи. Переводя математику на язык движений, ученики получат шанс лучше понять, что такое числа.

69

См.: Schaffer K., Stern E., Kim S. Math Dance with Dr. Schaffer and Mr. Stern. Santa Cruz, CA: MoveSpeakSpin, 2001.

70

Цит. по: Do the Math Dance // Science Daily. – 01.05.2008. – URL: http://old.sciencedaily.com/videos/2008/0503-do_the_math_dance.htm.

Шеффер и Стерн познакомились более двадцати пяти лет назад, причем именно благодаря танцу. В те времена Стерн танцевал с труппой «Тэнди Бил», которая пользовалась популярностью на сцене центра исполнительских искусств Северной Калифорнии. Шеффер же работал над своей кандидатской диссертацией по математике в Калифорнийском университете в городе Санта-Круз, что не мешало ему проводить довольно много времени на кафедре танца. Двое молодых людей быстро поладили друг с другом, а несколько лет спустя занялись совместным исследованием связи танца и математики {71} .

71

Приводится по: Traiger Lisa. 1 + 1 = Pas de deux // Dance Teacher Magazine. – 15.03.2010. – URL: http://www.dance-teacher.com/2010/03/1-1-pas-de-deux/.

В 1990 году они реализовали свой первый общий сценический проект, первый математический танец, под названием: «Доктор Шеффер и мистер Стерн: двое парней и их танец о математике». Представление настолько понравилось аудитории, что ребята отправились в поездку по стране, чтобы ставить свой математический танец в школах и других образовательных учреждениях. Вскоре к ним с вопросами начали обращаться учителя, которые интересовались, можно ли использовать часть действий из спектакля у себя в классе. Тогда Шеффер и Стерн взялись за новый проект: они решили переложить свой перформанс в ряд математических действий для классной комнаты. Так родился «Математический танец» [9] .

9

Посмотреть презентацию «Математического танца» на конференции TED в исполнении авторов можно в интернете по адресу:Прим. пер.

Они начали с самого начала – с действия, точнее танца, который служит вступлением к перформансу. Называется танец «Подсчет рукопожатий». По словам самих Стерна и Шеффера, это вступление представляет собой практически «водевильную» последовательность рукопожатий, в ходе которых двое героев все никак не могут найти подходящий для них обоих способ поздороваться. А когда наконец придумывают, как это можно сделать, то выясняют: они так переплели свои конечности, что теперь не могут распутаться. Как вспоминают авторы перформанса, когда они только начали работать над проектом, то и сами были удивлены тем, как много существует способов пожать друг другу руки. «Подсчет рукопожатий» исследует математическое понятие «сочетание» [10] . Ученики работают над этим упражнением в парах. Они создают последовательность из движений, пытаясь выяснить, сколько разных типов рукопожатий между двумя людьми с использованием одной руки существует. Например, первый участник может схватить правой рукой левую руку второго участника; затем своей левой рукой – его правую или левую, или своей правой – его правую. Ответ кажется очевидным: поскольку у каждого школьника две руки, значит, существует четыре возможные комбинации [11] . Однако ученики подходят к делу творчески и начинают искать варианты, чтобы увеличить это число. Так они узнают, что означает понятие «дискретное множество».

10

Сочетаниями в математике называются все возможные комбинации элементов множества, которые в различных вариантах перестановки отличаются друг от друга хотя бы одним элементом. Прим. пер.

11

Как показывает «Математический танец», ответ не так уж очевиден. Если не учитывать порядок следования, то возможных вариантов рукопожатий всего три: «правая-правая», «левая-левая» и «правая-левая». Прим. пер.

Дискретные множества, такие как рукопожатия или, например, стаи животных, состоят только из целых чисел – в отличие от воды или высоты деревьев, которые можно измерить в числах с дробями. Ученикам поначалу бывает сложно разобраться в этих «тонкостях». Но занявшись таким нехитрым делом, как обмен рукопожатиями в танце, они на самом деле решают задачу из области дискретной математики, а точнее – из комбинаторики, раздела математики, изучающего дискретные объекты и множества и их сочетания. Физические ощущения помогают ученикам понять абстрактные математические термины – в данном случае смысл выражения «дискретное множество».

Разобравшись с термином «сочетание объектов» и с тем, как проверяются все возможные комбинации, школьники тем самым осваивают сложное математическое понятие, с которым будут сталкиваться до конца своего обучения в колледже. Рассмотрим следующие алгебраические задачи для средней школы:

У Джона есть две рубашки и три пары брюк. Сколько у него есть возможных комплектов одежды?

Ответ: 2 x 3 = 6 возможных комплектов (поскольку Джон не нудист и всегда надевает и рубашку, и брюки).

У Салли в автомобиле есть CD-проигрыватель на шесть дисков. Всего у нее 100 дисков. Сколько возможных комбинаций загрузки плеера она может составить?

Ответ: при загрузке первого диска она может выбирать из 100 CD; для второго – из 99, для третьего – из 98; для четвертого – из 97; для пятого – из 96; для шестого – из 95. Итак: 100 x 99 x 98 x 97 x 96 x 95 = 858 277 728 000 (если Салли не передумает и продолжит заряжать по шесть дисков за раз).

Поделиться:
Популярные книги

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8