Мусор преграждает путь в космос
Шрифт:
Однако, думая о ближайшей перспективе удаления радиоактивных отходов в ОКП и в Космос, нельзя не предвидеть, что со временем они могут стать реальной угрозой для космонавтов и космических аппаратов. Необходимо выяснить, какие могут быть последствия от контакта РАО с находящейся в околоземном пространстве плазмой, а также проанализировать, останутся ли удалённые в Космос РАО локализованными или они будут распространяться дальше. Есть и другие вопросы: не слишком ли опасен процесс вывода РАО с поверхности Земли и не окажут ли отходы вредное воздействие на околоземное пространство, планеты и Солнце. Наконец, в состоянии ли потоки солнечного ветра вынести на периферию Солнечной системы распыленные РАО.
В заключение подчеркнём, что идея удаления
Специалисты призывают хотя бы не мусорить больше. А отправляемые в Космос аппараты снабжать особыми двигателями-терминаторами, которые бы переводили отработавшие спутники на низкие орбиты, чтобы они там сгорали.
Интересно довольно необычное, если не сказать фантастическое, возможное использование орбитальных экскретов в военных целях. Орбитальные отходы, пока теоретически, но вскоре и на практике, могут быть превращены в оружие. Причём оружие — «абсолютное», против которого на современном этапе развития технологий нет средств противодействия [23]. Анализ траекторий космических объектов при их входе в плотные слои атмосферы показал, что с теоретической точки зрения, любую из траекторий спуска можно изменить, направив при этом обломки в нужном направлении. Для учёных и исследователей это возможность очистить орбиту от орбитального и космического мусора, мешающего запуску новых летательных объектов и угрожающего функционированию старых.
Военные же увидели в этой возможности оружейный потенциал. Орбиту любого из отработанных обломков или спутников (лучше с РАО) можно изменить, например, использовав небольшой ракетный двигатель, и направить их можно куда угодно. Таким образом после небольшой доработки орбитальные экскреты могут стать орбитальной бомбой, находящейся в постоянной боевой готовности.
В случае войны такое оружие позволило бы ликвидировать любые наземные объекты. Ведь обломки или другой орбитальный хлам, используемый в качестве оружия, при входе в атмосферу двигаются с такой скоростью и с таким малым временем подлёта, что их невозможно сбить средствами ПВО.
Отметим, что на сегодняшний день не существует технологий, позволяющих по сигналу с Земли изменять траектории объектов орбитальных отходов, направляя их в нужное место. Однако, специалисты Космического агентства NASA заявляют, что до их появления остаётся пара тройка лет [33].
При этом следует иметь в виду, что спутники с РАО, выведенные за пределы геостационарных орбит, а также сниженные до атмосферного слоя Земли (ниже 200 км) из отходов переходят в экскретную категорию мусора со всеми вытекающими из этого факта последствиями.
4. Орбитальный техногенный мусор
Проблема засорения околоземного космического пространства техногенным орбитальным мусором как чисто теоретическая возникла по существу сразу после запусков первых искусственных спутников Земли в конце пятидесятых годов прошлого века. Официальный статус на международном уровне она получила после доклада Генерального секретаря ООН под названием «Воздействие космической деятельности на окружающую среду» 10 декабря 1993 г. [24]. В докладе особо отмечено, что проблема имеет международный, глобальный характер: нет засорения национального околоземного космического пространства, есть засорение космического пространства Земли, одинаково негативно влияющее на все страны, прямо или косвенно участвующие в его освоении.
Орбитальный техногенный мусор, определяется как не утилизируемые обломки летательных аппаратов ракетно-космической техники, а также вспомогательных приборов или механизмов, их разрушенные детали и фрагменты, находящиеся в ОКП и на входе в плотные слои атмосферы. Он является наряду с орбитальным космическим мусором составной частью обширного класса экскретов «Орбитального мусора» (см. схему раздела 2.).
Говоря
Объекты орбитального мусора, в отличие от орбитальных отходов, не могут быть экономически выгодно утилизированы и поэтому должны уничтожаться — самопроизвольно (сгорая в атмосфере) или принудительно с использованием технических средств и устройств.
Количество орбитальных экскретов в виде отходов, отбросов и космического мусора неуклонно растёт. В настоящее время более 22 тысяч крупных фрагментов и множество мелких летает вокруг Земли со скоростями порядка 10 километров в секунду и выше. Когда космическое оборудование на летательных аппаратах завершает свою миссию, оно становится орбитальным мусором или отходом в зависимости от его положения на орбите и от возможности быть утилизированным.
Рис. 4.1. Схема входа тела в плотные слои атмосферы
Мусорные объекты на участке входа в плотные слои атмосферы также могут представлять опасность столкновений для взлетающей ракетной техники. Их траектории спуска и торможения рассчитать чрезвычайно сложно из-за постоянно меняющихся параметров атмосферы, геометрических и динамических характеристик движущихся тел.
Эволюция орбиты спутника или элементов орбитального мусора и время их существования определяется, в основном, естественными возмущениями: гравитационным полем Земли и его несферичностью, гравитационным воздействием Луны и Солнца, давлением солнечной радиации и тормозящим действием атмосферы. Вследствие торможения объект постепенно (по спирали) входит в более плотные нижние слои атмосферы, где в конце концов из-за трения и сгорает.
Рассмотрим особенности спуска в плотную атмосферу тел на примере искусственного спутника Земли (ИСЗ). В процессе спуска сопротивление атмосферы Земли вызывает уменьшение большой полуоси орбиты ИСЗ, в результате чего он по спирали снижается к Земле. При достижении высоты около 160 км спутник сможет сделать всего пару оборотов и сгорит в атмосфере, войдя в резкий и необратимый спуск.
Время жизни спутника определяется физическими характеристиками атмосферы, активностью Солнца, а также эксцентриситетом его орбиты и размером её большой полуоси. Теоретически этот параметр предсказать можно только с большой ошибкой. В таблице ниже представлены времена жизни типичного ИСЗ на завершающем этапе его существования для разных значений его траекторных параметров: перигея и апогея [26].
Таблица № 2.3.1.
Время существования ИСЗ массой 100 кг и диаметром 1 м, сутки
Из таблицы видно, что и высоты апогея и перигея сильно влияют на время существования Т0 орбитального объекта. Например, увеличение высоты перигея в 2 раза приводит к почти пятидесятикратному росту Т0 для траекторий с низким апогеем и более чем к восьмидесятикратному увеличению Т0 для траекторий с высоким апогеем. Указанные в таблице значения параметра Т0 имеют большую погрешность из-за неопределенностей в значениях геометрии спускаемого объекта, его ориентации в полёте и вариациях изменения плотности воздуха с высотой.