Мы и её величество ДНК
Шрифт:
Ставил такой опыт Август Вейсман. Все было просто: в течение многих поколений Вейсман отрезал крысам хвосты и из поколения в поколение получал от бесхвостых животных хвостатых потомков. Приобретенный признак не наследовался. Убедительный опыт? Вроде бы да. А впрочем, его можно было не ставить. С XVII века, если не раньше, существует порода собак — фокстерьеры. И всегда им подрезали и подрезают хвосты, а бесхвостых фокстерьеров все же не вывели. Не уменьшились у этих собак и уши, которые тоже подрезают из поколения в поколение. Казалось бы, показательные факты. Но сторонников наследования приобретенных свойств такие факты (а число их можно увеличить) не только не убеждают, но даже мало смущают! Отрубленные хвосты и уши? Но ведь это же пустяк! Вы коренным образом измените обмен веществ, вот тогда мы посмотрим!
Ламаркисты
Да потому, что эксперимент — дело сложное. Тут нужна педантичность и скрупулезность, предельная научная честность и самоконтроль, многократные повторности и самопроверки. И не сразу научились биологи ставить опыты правильно. А пока не научились, получалось нередко как у Гюйера и Смита: искусственное повреждение хрусталика глаза у отца вело к повреждениям у потомков. Конечно, в точных экспериментах эти опыты не подтвердились.
В каждой из пар слева пшеница урожая 1840 года, справа — 1911 года.
Однако: что такое правильно поставленный опыт?
Прежде всего он должен быть поставлен так, чтобы не мог обмануть самого исследователя. Нужна тщательная продуманность, большой материал, обязательно обставленный всесторонним контролем. И вот если с такой строгостью поставить опыты, окажется: признаки, приобретенные организмом в течение жизни, по наследству не передаются. Дети инвалидов не рождаются инвалидами, а наследственно маломолочная корова, как бы ее ни раздаивали, не даст обильномолочных потомков (если, конечно, не окажется в этом отношении улучшателем бык).
Почему это так происходит? С чем это связано? Собственно говоря, иного нельзя было ждать. Для вида, породы, сорта было бы катастрофой, если бы при любом изменении условий среды менялась наследственность. Не было бы ни малейшего постоянства видов. А между тем науке известно, что многие виды были такими же, как сейчас, сотни тысяч и даже миллионы лет назад.
Рассмотри внимательно рисунок, на котором показаны колосья различных пшениц. Это опыт, поставленный на свалефской опытной станции в Швеции. В каждой из пар слева изображены колосья из урожая 1840, а справа — 1911 года. Между двумя урожаями прошел семьдесят один год; самые различные условия встречали за это время пшеницы, но наследственные особенности сортов не изменились. Однако постоянство вовсе не означает неизменности — наследственность меняется. Немного ниже мы это увидим. Но меняется наследственность не так-то легко.
Нельзя ли проверить самому?
Можно, мой дорогой друг, пытливый читатель, и очень легко, но только работать придется на дрозофиле.
С другими объектами на это потребуются годы, а на дрозофиле весь опыт займет двадцать — двадцать пять дней.
«Кёрли» трех типов.
Обратись в любую генетическую лабораторию и попроси дрозофил линии Cy («кёрли»). Концы крыльев у них изогнуты кверху, что связано с изменением, локализованным во второй хромосоме. А заодно попроси штук десять пробирок с питательной средой, чтоб не варить ее самому. Когда ты объяснишь, зачем тебе нужно, уверен, ни один генетик не пожалеет пробирок, а мух и подавно, ибо если они есть, то всегда в избытке. Лучше всего там же, в генетической лаборатории, рассадить мух по пробиркам, по две-три пары на каждую. Можно сделать это и не в лаборатории, но тогда тебе придется изготовить морилку. Ее детали и приборчик в собранном виде изображены на рисунке. Самое трудное тут — запаять, а потом проколоть раскаленную на огне стеклянную трубочку иглой; однако при наличии старания, газовой горелки или же примуса и это сделать довольно легко. В стакан морилки кладут комочек ваты, а потом, вынув пробку с воронкой, льют па вату совсем немножко эфира (его можно заменить эфирно-валерьяновыми каплями, которые продаются в аптеке).
Легонько постукав пробирку
Когда мухи окончательно оживут, пробирки нужно поместить в температуру 26—28 градусов. Это нормальная для дрозофил температура. Две пробирки оставь при этой температуре на все время опыта — это будет контроль. С остальными пробирками ты проведешь опыт. Он будет заключаться в том, что каждый день ты будешь брать по одной пробирке и на сутки выносить в прохладное помещение (с температурой 16—18 градусов). Отмечай, какую пробирку в какой день ты выносил.
Морилка: 1 — воронка, 2 — пробка, 3 — резиновый шланг, 4 — пробирка, 5 — вата, 6 — стеклянный цилиндр.
Когда мухи во всех пробирках вылупятся, ты сможешь просмотреть результаты опытов. Как в контроле, так и в пробирках, которые охлаждались на 2, 3, 6, 7, 8-е сутки, все мухи будут самыми обыкновенными «кёрли» — крылышки чуть-чуть загнуты. А вот в вариантах опыта, где охлаждение производилось на четвертые-пятые сутки, мухи будут различными. Найдешь ты здесь и нормальных «кёрли», но будут и такие, у которых крылья окажутся не только что загнутыми, но закрученными в трубочку. Значит, на четвертые-пятые сутки пониженная температура вызывает резкое усиление действия гена «кёрли». Иная картина будет при охлаждении на девятые-десятые сутки, перед вылупленном мух. Ты тут найдешь совсем прямокрылых. В отличие от типичных «кёрли», которые не летают, а «прыгают», эти мухи могут превосходно летать. Внешне они ничем не отличаются от обычных прямокрылых мух, лишенных гена «кёрли». Вроде бы ген пропал!
Однако если ты отнесешь в лабораторию использованные пробирки, а взамен попросишь хотя бы три новых, ты можешь продолжить опыт. В одну пробирку посади две пары мух из контроля, в другую трубчатокрылых, а в третью — тех, у которых ген «кёрли» «пропал». Теперь уже на холод пробирки не выноси, пусть мухи все время развиваются при 26—28 градусах. Когда вылупится второе поколение, ты убедишься: во всех трех пробирках мухи абсолютно одинаковые — все «кёрли».
О чем говорит опыт? Степень проявления гена «кёрли» у дрозофилы сильно зависит от температуры, при которой проходило развитие. Тут есть два чувствительных периода: первый на четвертые-пятые сутки, второй на девятые. Если в первом случае пониженная температура вызывает усиление действия гена, то во втором, напротив, ведет к выпрямлению крыльев. А по наследству эти изменения не передаются. И не трудно понять почему. От гена к признаку ведет путь, состоящий из целой цепи реакций. Какие-то два из звеньев этой цепи зависят от температуры. Однако чтобы изменился при этом ген, нужно изменить все предыдущие реакции.
Спонтанные мутации
О внезапных изменениях наследственности знал еще Дарвин. Взгляните на рисунок, где изображены овцы. Слева овца нормальная, в центре и справа овца и баран с сильно укороченными ногами. Сперва появилось одно-единственное такое животное. Изменение оказалось наследственным, рецессивным. Оно заинтересовало селекционеров, его подхватили, и была создана анконская порода коротконогих овец. Эти овцы не в состоянии перепрыгнуть даже через сравнительно низкую изгородь, а это важно в английских условиях: там животные постоянно содержатся в загонах. Дарвин описывает эти изменения, а также другие подобные, называя их спортами. Изменения такого рода сыграли большую роль в формировании пород голубей, и Дарвин приводит очень много примеров из голубеводства (он был членом двух голубеводческих клубов).