Чтение онлайн

на главную

Жанры

Начала экскретологии

Романов Вадим Иванович

Шрифт:

Подобные процессы возникновения глобальных экскретов наблюдаются и в других природных средах. Рассмотрим механизм возникновения и трансформацию глобального экскрета на примере возникновения залежей подводного метана. Метан является самым «опасным» парниковым газом, так как выбросы этого газа провоцируют очередной этап глобального потепления. На определённом этапе повышения температуры на планете учёные предсказывали начало выбросов метана из океанов и зон вечной мерзлоты в полярных зонах Земли. В частности, в последние годы исследователи обнаружили выбросы значительных запасов метана со дна Северного ледовитого океана [92]. По мере потепления мирового океана вода прогревает его дно, и это провоцирует выбросы

метана.

Предположительно этот глобальный экскрет возникает так. В океане организмы умирают, опускаются на дно и частично разлагаются в метан. Под высоким давлением и под воздействием низких температур молекулы метана «попадают в капкан» – превращаются в супрамолекулярное соединение метана с водой, известное как газовый гидрат [93], который стабилизируется в плотный тонкий слой под дном океана.

Энциклопедия [94] определяет этот продукт так. «Гидрат метана – супрамолекулярное соединение метана с водой, устойчив при низких температурах и повышенных давлениях, наиболее широко распространённый в природе газовый гидрат».

Отмечается, что гидрат метана может стать ценным источником экологически чистой энергии, так как горящий метан вырабатывает значительно меньше углекислого газа, чем любые горючие ископаемые минералы. Гидрат метана – это похожая на лёд субстанция, состоящая из воды и метана, которая стабильна только в холодной воде и под большим давлением. Газовые гидраты внешне напоминают спрессованный снег, могут гореть, легко распадаются на воду и газ при повышении температуры. Благодаря своей структуре газовый гидрат объёмом 1 см3 может содержать до 160–180 см3 чистого газа.

Распадающийся гидрат метана служит своеобразным индикатором изменения планетарного климата. «Так как придонная температура растёт, гидрат распадается, следовательно мы имеем ещё одно подтверждение роста температур в океане под влиянием меняющегося климата", – считают исследователи [92]. Заметим, что по предварительным данным, за последние 30 лет температура воды в Северном Ледовитом океане увеличилась в среднем на 1 градус по Цельсию.

В 40-е годы прошлого века советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты. В 60-е годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. Постепенно выясняется их широкое распространение в океанах и нестабильность при повышении температуры. Поэтому сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.

Как следует из фазовой диаграммы гидрата метана, для его образования требуются низкие температуры и относительно высокое давление и чем больше давление, тем выше температура, при которой гидрат метана устойчив. Так, при О °С он стабилен при давлении порядка 25 бар и выше. Такое давление достигается, например, в океане на глубине около 250 м. При атмосферном давлении для устойчивости гидрата метана нужна температура около-80 °C. Однако, метангидраты всё же могут довольно долго существовать в условиях низких давлений и при более высокой температуре, но обязательно отрицательной – в этом случае они находятся в метастабильном состоянии, их существование обеспечивает эффект самоконсервации, – при разложении метангидраты покрываются ледяной коркой, что мешает их дальнейшему разложению. При увеличении мощности осадков в море и погружении или уменьшении мощности мерзлоты, гидрат метана распадётся и на небольшой глубине образуется газовый резервуар, из которого газ может прорваться на поверхность. Такие взрывы метановых месторождений, существующих в виде глобальных экскретов, действительно наблюдаются в тундре и иногда в морях.

Кстати, катастрофический распад гидрата метана предположительно считается причиной Поздне-палеоценового термального максимума – геологического события на границе палеоцена и эоцена, приведшего к вымиранию многих видов животных и изменению климата [95].

Процессом прорыва метана из морских залежей газовых гидратов можно объяснить таинственные исчезновения кораблей в Бермудском треугольнике и некоторых других местах Мирового океана. Дело в том, что при подъёме метана к поверхности вода насыщается пузырьками газа и плотность воздушно-водяной смеси резко падает. Её несущая способность уменьшается, корабль «проваливается», теряет плавучесть и тонет.

Ещё одним примером глобального экскрета могут служить залежи полезных ископаемых морского дна, имеющие космическое происхождение. Мировой океан занимает около 71 % земной поверхности. На его дне находятся разнообразные полезные ископаемые, и протекает интенсивный рудогенез (возникновение залежей). Вклад космического материала в океанические осадочные породы (например, накопление таких компонентов, как железо, никель, кобальт) морские геологи и геохимики связывают со значительными поставками на дно океана космической пыли [110], оседающей на дне в виде ила.

Многочисленные измерения, выполненные в различных лабораториях мира, показали, что глубоководные илы растут со скоростью примерно 1 миллиметр за тысячу лет. В масштабах существования нашей планеты такое казалось бы мизерное выпадение космического вещества даёт вполне ощутимые величины: ~1 метр осадков за 1 миллион лет и 1 км – за 1 миллиард лет.

Такие илистые образования находят практически во всех морях и океанах, а также нередко и в озёрах. Однако только глубоководные океанические конкреции залегают с большой плотностью (до 200 кг/м), образуя рудные поля, перспективные с точки зрения разработки полезных ископаемых. Конкреции имеют неправильную сферическую форму с диаметром 8 мм. Они предотавляют собой полиметаллические руды: кроме марганца и железа (основных своих компонентов) содержат много Ni, Си, Со, а также Pt (до 4 г на тонну) и другие металлы. Считается, что железомарганцевые конкреции занимают около 10 % площади океанического ложа. Их запасы составляют примерно 340 млрд. т. Таким образом, космические экскреты заметно пополняют Землю полезными сырьевыми ресурсами.

Захоронения углерода на дне океана в виде панцирей микроорганизмов и моллюсков, а также геологические образования, такие как месторождения нефти и угля, возникшие из растительных остатков, очевидно, также являются глобальными экскретами. С процессами их формирования можно ознакомиться в многочисленных литературных источниках, поэтому они здесь не приводятся.

Ещё одним примером глобального экскрета, появление которого предсказано задолго до его возникновения, являются «рудные тела» мусорных полигонов и свалок.

Некоторые мусорные (гарбологические) объекты – такие как крупные свалки и мусорные полигоны представляют собой многотонные скопления разнородных и разнофазных элементов, спрессованных силой тяжести и приобретающих со временем свойства некоторой осреднённой среды – сродни геологической среде. Современные представления о геологической среде [111,112], широко используются в настоящее время в науках о Земле.

Понятие "геологическая среда" по-разному трактуется у различных авторов в зависимости от направлений их исследований. Формулировки этого термина базируются на том, что геологическая среда это сложный объект природы, объективно существующий независимо от человека и его деятельности. Геологическая среда состоит из отдельных элементов – рельефа, горных пород, подземных вод, многолетней мерзлоты, а также природных процессов и т. д.

Поделиться:
Популярные книги

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Второй Карибский кризис 1978

Арх Максим
11. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.80
рейтинг книги
Второй Карибский кризис 1978

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать