Чтение онлайн

на главную - закладки

Жанры

Нанонауки. Невидимая революция
Шрифт:
МОЛЕКУЛЫ ДЛЯ КВАНТОВЫХ ВЫЧИСЛЕНИЙ

Первыми о квантовых вычислительных устройствах заговорили еще в 1980-х годах Ричард Фейнман и Дэвид Дейч из Центра квантовых вычислений Оксфордского университета. Принцип квантового калькулятора основывается на спонтанной реакции квантовой — атомной или молекулярной — системы, находящейся в некотором нестационарном состоянии; предложено использовать для вычислений самопроизвольный отклик этой системы на какой-то стимул. Система делится на маленькие маленькие вычислительные единицы — «квантовые биты». Линейка квантовых битов может быть приведена к квантовой суперпозиции двух основных состояний (0 или 1), и оба состояния будут взаимодействовать между собой, но без обмена электронами. Само вычисление сводится к предоставлению ансамблю квантовых бит возможности самопроизвольно развиваться во времени. Квантовое вычислительное устройство считает примерно так, как считает время часовой механизм на шариках или на подшипниках, катающихся вдоль реек разной длины. Такие часы отсчитывают время ничуть не хуже, чем часы на зубчатых колесиках. Сначала систему квантовых битов готовят, вводя в нее два складываемых

числа. Потом система развивается во времени самотеком: состояния отдельных бит меняются, пока не установится новое стационарное состояние всей линейки бит, которое и будет искомой суммой.

Эта концепция квантового калькулятора показывает, что вычислительные устройства не обязательно строить из электронных схем. Более того, специалисты по молекулярной электронике показывали, что незачем «заставлять» молекулу уподобляться электронной схеме — молекула может считать, но совсем не так, как приборы макро- или даже микроэлектроники. Оказывается, для того, чтобы научить молекулу считать, достаточно воспользоваться квантовой динамикой, которая присуща любой молекуле. При этом квантовые молекулы-калькуляторы способны выполнять все мыслимые арифметические и логические операции и, при равной сложности, совсем не обязаны быть такими же громадными и громоздкими, как те молекулы-схемы, которые пригрезились Форресту Картеру. Ученые даже сумели показать, что для квантовых расчетов вовсе незачем дробить молекулу на квантовые биты. Управлять внутренними квантовыми состояниями молекулы можно и манипулируя ее электронной структурой. Сами эти молекулы уже синтезируются и, надо думать, скоро мы узнаем о первых экспериментах с ними. Среди прочего они избавляют нас от пресловутого закона Мура. В самом деле показано, что для увеличения вычислительной мощности не обязательно нагромождать все больше и больше транзисторов на все сильнее уменьшающейся подложке, так как есть возможность управлять развитием квантовой системы во времени, а сама эта система может становиться все сложнее и сложнее и каждое новое поколение подобных систем будет богаче возможностями, чем системы предыдущего поколения.

ЗАВОДЫ ИЗ МОЛЕКУЛ

Первые механические молекулы и первые молекулярные вычислители уже описаны. Напрашивается мысль о соединении молекул обоих типов: если поставить молекулу-калькулятор на молекулу-карету, то получится… молекулярный робот. В самом деле в нашем — макроскопическом — мире роботом называется устройство, выполняющее различные механические задачи и управляющееся вычислительной машиной, установленной в корпусе робота. Сегодня молекула-робот — лишь идея или, лучше сказать, мечта. И никто не скажет, сбудется ли когда-нибудь эта мечта. Химическому синтезу подобных нанороботов и телеуправлению таким синтезом мешают препятствия, кажущиеся пока непреодолимыми.

Но если уж синтез нанороботов столь сложен, то почему бы не попытаться его обойти? Скажем, возложив эту задачу на машины. Ну и пусть сами эти машины тоже будут молекулярными. И пусть они, перебирая атом за атомом (или присоединяя одно химическое соединение к другому), собирают из них все нужные молекулы-машины. Не очень пока понятно, какими они, эти молекулярные сборщики, будут. Ясно лишь, что речь идет о самых настоящих сборочных цехах, даже заводах по производству молекул вычислительных и механических, а также нанороботов. Понятно, конечно, что на нынешнем уровне знаний что-либо в этом роде немыслимо и неосуществимо.

Судя по тому, что нам рассказывают, эти молекулярные сборщики молекул-машин должны выглядеть ультраминиатюризованными копиями роботов, уже трудящихся на наших заводах. К примеру, такому сборщику нужны клещи или пинцет и телескопическая механическая рука — чтобы захватывать маленькие молекулы и по одной подсоединять их, друг за другом, выстраивая нужные агрегаты. Ричард Смолли, большой мастер по обхождению с молекулами фуллерена, не согласен: если молекулярные щипцы схватят молекулу, то выпустить ее они просто не смогут, так как для захвата понадобится химическая реакция, а что делать для того, чтобы щипцы ослабили хватку? Химическую реакцию так просто не «выключишь» — это же не электрический ток. И остановить ее, если она происходит, непросто. Но кто сказал, что сборщику непременно нужны щипцы на конце телескопической руки-схвата — неужели передвинуть один атом или одиночную молекулу нельзя как-то по-другому? Наши коллеги в Свободном университете Берлина иглой туннельного микроскопа передвигали молекулу с шестью ножками в надежде, что она «проглотит» атомы меди, предварительно выложенные на поверхности. Эти атомы постепенно, по одному, оказались под молекулой, в кучке, после чего как-то сортировать или перебирать их стало невозможно — мешали ножки молекулы. Так что экспериментатор может отпустить захваченные было атомы — если только ему удастся поднять иголкой ту молекулу, которая собрала их в кучку.

Другие ученые, в том числе Уилсон Хо, Дон Эйглер, Герхард Мейер или Жеральд Дюжарден из парижского университета Пари-Сюд в Орсе, пробовали на роль сборщика туннельный микроскоп. Они пытались, пользуясь этим прибором, синтезировать молекулу, соединяя, по одному, атом за атомом или фрагмент молекулы за молекулярным фрагментом. Оказалось, что подтолкнуть иглой микроскопа две молекулы навстречу друг другу, чтобы они вступили в химическую реакцию, — предприятие очень утомительное. Надо ухитриться так подвести иглу, чтобы молекула заняла нужное положение: вступит молекула в реакцию или же останется безучастной, зависит от ориентации этой молекулы; точнее, от ориентаций обеих молекул. Правда, похоже на то, что эту задачку и решать незачем: тепло приводит молекулу в движение, исследуемые молекулы самопроизвольно принимают множество самых разных ориентаций, и какие-то из них наверняка вступят в нужные исследователям реакции.

ВСЕ БОЛЬШЕ, И БОЛЬШЕ, И БОЛЬШЕ?

Монументализировать так монументализировать — почему бы и нет? Но неужто до бесконечности? Или все-таки до какого-то предела? Так до какого же размера нам придется строить молекулу? А до нужного — позволяющего в один присест синтезировать одну молекулу-машину. Так, в 2002 году японские химики сумели сформировать молекулярную цепочку длиной в 100 нм. Раньше или позже, но по достижении некоторого (но какого?) размера или определенной сложности (какой?) вновь синтезировать за один раз очередную молекулу, состоящую из все более усложняющихся механизмов, не удастся. Напрашивается возвращение к обычной производственной практике — сборке из готовых частей. А это приводит нас в область супрамолекулярной химии: есть химики, которые уже возделывают эту ниву, например Фрейзер Стоддарт из университета в Лос-Анджелесе, Жан-Пьер Соваж в научном центре CNRS,лауреат Нобелевской премии Жан-Мари Лен в университете в Страсбурге.

Но как собрать множество молекулярных частей вместе — и так, чтобы получалась сложная машина? Одни ученые, скажем, Жан-Мари Лен, изучают самопроизвольную сборку раздельных деталей: такая «самосборка» или «автосборка» напоминает детские головоломки и пазлы. Необходимые части помечают какими-то химическими соединениями. Каждая такая химическая метка опознает свою пару, то есть соединение-метку на другом кусочке пазла, и затем два кусочка головоломки сцепляются между собой. И так до завершения сборки. Этот метод самопроизвольной сборки в ходу у вирусов и у некоторых живых существ, включая многие виды бактерий. Вот почему столь важны исследования таких наипростейших «машин» или еще меньших самособирающихся «автоматов», как вирусы.

Группе ученых под руководством профессора Эккарда Виммера в Университете Стони Брук под Нью-Йорком в 2002 году впервые удалось синтезировать вирус — это был вирус полиомиелита. В природе он выглядит как шарик диаметром 28 нм. Его генетическую и белковую структуры расшифровывал в 2000 году Джеймс Хогл из Гарвардского университета, а позднее, в 2001 году, и Эккард Виммер с сотрудниками. Вирус этот состоит из собственно вируса — виральной компоненты — и оболочки, более или менее сферической. Виральная часть — это макромолекула РНК, содержащая 7411 нуклеотидов, и каждый из них, если его развернуть, вытянется на несколько микрометров. Шарообразная оболочка (капсид), внутри которой прячется виральная часть (вирион), составлена из 60 подъединиц, в каждой — по четыре белка. А каждый белок содержит в среднем 250 аминокислот. В 2002 году команда Эккарда Виммера сначала синтезировала РНК виральной части с ее 7411 нуклеотидами: в большинстве своем это цепочки атомов, которые уже умеет получать биотехнология и которые потому можно просто купить в магазине. Потом ученые химически синтезировали недостающее. По сравнению с химическим синтезом молекулы-машины в несколько этапов задача чрезвычайно упростилась — хотя бы потому, что многократно приходится синтезировать одно и то же или же вносить в синтез незначительные и очень понятные перемены. Получив виральную составляющую, исследователи не стали спешить с синтезом четырех протеинов, из которых состоит оболочка вируса. Вместо этого, чтобы получить белки и, главное, построить их в правильном порядке, сотрудники Эккарда Виммера состряпали «суп» из живых клеток, и синтезированная РНК полиомиелита использовалась уже существующими и работающими клеточными механизмами для построения оболочки — словом, был запущен механизм автосборки (ученые подсунули клеткам чужую РНК, и клетки, по своей рабской привычке, послушно выполнили совершенно ненужную им работу: собрали капсид (оболочку) вируса). Значит, не всегда необходимо строить новые молекулярные заводы — можно просто заказать нужный продукт предприятиям, уже существующим в природе. Например, бактериям.

ЗАГОГУЛИНА В НАПРАВЛЕНИИ НАНОМАТЕРИАЛОВ

Мы уже рассказали о первых молекулах-машинах и показали те дорожки, которые, похоже, могут вывести нас к молекулярному производству, то есть изготовлению молекул достаточного размера, примерно в десяток нанометров, которым будут по силам те же сложные дела, что и привычным для нас машинам нашего — макроскопического — мира. И мы обозначили эту задачу термином «монументализация», хотя занимаются монументализацией считаные исследователи — куда больше ученых заинтересованы в новых материалах, которые они называют «наноматериалами». Наноматериалы вроде бы могут иметь отношение к бетону, облицовке, керамике… словом, к вещам заведомо полезным и очень осязаемым. И будто бы как нельзя более далеким от той области, в которой орудуют молекулы-машины. Да и масштабы — бетона! — как-то трудно увязываются с нанометрическими. И как тогда прикажете понимать это самое «нано»? Собственно, термин «наноматериал» был вычеканен потому, что очень уже неудобно выговаривать: «материал, структурированный в нанометрическом масштабе». Речь идет о материалах, построенных из элементов, которые представляют собой молекулы, макромолекулы или маленькие атомные агрегаты (более или менее упорядоченные нагромождения атомов), причем размеры этих элементов, этих составных частичек материала, несомненно, измеряются в нанометрах. Возьмем, например, поваренную соль (или, если угодно, хлорид натрия). Ее основной мотив — повторяющийся узор, в узлах которого расположены атом хлора и атом натрия (расстояние между ними менее 0,3 нм). Этот узор повторяется пространственно — в трех измерениях, и в итоге получается кристаллик соли, маленький кубик, который очень просто подцепить пинцетом, чтобы потом разглядывать через лупу. Стало быть, структура поваренной соли — вполне атомная. А теперь обратимся к какому-нибудь наноматериалу: его повторяющийся мотив — это одна молекула, быть может, сложная, но, главное, она придает материалу какую-то нужную характеристику (устойчивость к деформациям, способность запоминать информацию и т. п.). Но сие драгоценное качество появляется только тогда, когда миллионы таких — одинаковых — молекул собираются вместе. И это же верно и тогда, когда элементарные кирпичики материала — не молекулы, а наночастицы размером лишь в несколько нанометров в диаметре, но собранные в нагромождения из тысяч и тысяч атомов.

Поделиться:
Популярные книги

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Виконт. Книга 4. Колонист

Юллем Евгений
Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.50
рейтинг книги
Виконт. Книга 4. Колонист

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

"Колхоз: Назад в СССР". Компиляция. Книги 1-9

Барчук Павел
Колхоз!
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Колхоз: Назад в СССР. Компиляция. Книги 1-9