Чтение онлайн

на главную - закладки

Жанры

Наша математическая вселенная. В поисках фундаментальной природы реальности
Шрифт:

Простейшим кандидатом на роль темной энергии была космологическая постоянная – упоминавшийся выше подгоночный параметр, который Эйнштейн ввел в свою теорию гравитации (и назвал его позднее самой серьезной своей ошибкой). Существование темной материи предположил в 1934 году Фриц Цвикки, чтобы объяснить дополнительное гравитационное притяжение, удерживающее скопления галактик от распада. А Вера Рубин в 60-х годах открыла, что спиральные галактики вращаются настолько быстро, что они разлетелись бы на части, если бы не содержали невидимую гравитирующую массу. Эти идеи были встречены довольно скептически: если ты утверждаешь, что необъяснимые явления связаны с сущностью, которая невидима и способна буквально просачиваться сквозь стены, то не пора ли верить в привидения? К тому же древняя история знает тревожный прецедент: поняв, что планетные орбиты не являются идеальными окружностями, Птолемей усложнил свою теорию, заставив планеты двигаться по меньшим окружностям (эпициклам), которые, в свою очередь, двигались

по окружностям. Последующее открытие более точных законов тяготения отменило эпициклы, предсказав, что орбиты планет не круговые, а эллиптические. Возможно, необходимость в темной материи и темной энергии также исчезнет, если открыть еще более точный закон тяготения? И можно ли воспринимать всерьез современную космологию?

Рис. 4.1. И темная материя, и темная энергия невидимы, то есть отказываются взаимодействовать со светом и иными электромагнитными явлениями. Мы догадываемся об их существовании лишь по причине их гравитационного влияния.

Такого рода вопросами мы задавались, когда были аспирантами. Чтобы ответить, требовались гораздо более точные измерения, которые превратили бы космологию из дисциплины умозрительной, небогатой эмпирическими данными, в точную науку. К счастью, произошло именно это.

Точные флуктуации микроволнового фона

Как видно на рис. 3.6, «детскую фотографию» нашей Вселенной, полученную в ходе наблюдений космического микроволнового фона, можно разложить на сумму компонентных карт, называемых мультиполями, которые, по сути, отражают вклад пятен различных размеров. На рис. 4.2 показана общая величина флуктуаций для каждого мультиполя. Эта кривая называется спектром мощности микроволнового фона, и в ней закодирована ключевая космологическая информация, которую содержит карта. Когда вы смотрите на карты неба (рис. 3.4), вы видите пятна разных размеров, как на псе-далматинце: некоторые пятна всего около 1° в поперечнике, другие – 2°, и т. д. Спектр мощности содержит информацию о том, сколько имеется пятен каждого размера.

Рис. 4.2. Точные измерения зависимости флуктуаций космического микроволнового фона от углового масштаба исключают многие популярные прежде теоретические модели, но прекрасно согласуются с кривыми, которые предсказаны современной стандартной моделью. Этот график позволяет оценить замечательные аспекты современной космологии, не беспокоясь о деталях: высокоточные измерения существуют, они полностью согласуются с теоретическими предсказаниями.

Но самое замечательное то, что спектр мощности можно не только измерить, но и предсказать: для любой математически заданной модели расширения и кластеризации Вселенной можно точно рассчитать вид спектра мощности. Как показано на рис. 4.2, предсказания для разных моделей сильно различаются. Доступные сегодня измерения с высокой степенью надежности исключают все теоретические модели, представленные на рис. 4.2, кроме одной (несмотря на то, что в годы моей аспирантуры за каждой «убитой» моделью стоял кто-нибудь из моих уважаемых коллег, и порою не один). Предсказываемая форма спектра мощности сложным образом зависит от всего, что влияет на космологическую кластеризацию (включая плотность атомов, плотность темной материи, плотность темной энергии и природу первичных флуктуаций), так что если мы скорректируем допущения обо всех этих вещах так, чтобы предсказания совпадали с измерениями, мы не только подтвердим, что модель работает, но и измерим эти важные физические величины [14] .

14

Параметры, определяющие форму кривой спектра мощности, являются в значительной мере «подгоночными»: мы не в состоянии их измерить. Вместо этого мы подбираем такие их значения, чтобы соответствующая им кривая прошла через точки, отвечающие наблюдениям. При этом критически важно, конечно, что кривую спектра мощности можно заставить пройти через все эти точки за счет выбора всего нескольких параметров. Это и свидетельствует о разумности выбранной модели, и указывает на значения этих параметров, действительно реализованных в нашей Вселенной. – Прим. науч. ред.

Телескопы и компьютеры

Когда в аспирантуре я впервые узнал о космическом микроволновом излучении, никаких измерений спектра мощности еще не было. Затем команда COBE дала первый набросок этой трудноуловимой извивающейся кривой, определив, что ее высота в левой части составляет около 0,001 % и что она идет примерно горизонтально. Данные COBE содержали больше информации о спектре мощности, но никто ее не выделил, поскольку для этого требовались трудоемкие манипуляции с таблицами чисел – матрицами, – занимавшими до 31 мегабайта памяти. В 1992 году эта величина была устрашающей. С однокурсником Тедом Банном мы придумали коварный план. У нашего профессора Марка Дэвиса был компьютер с объемом памяти более 32 мегабайт, который мы называли «волшебной горошиной», и ночь за ночью я логинился на него в предрассветные часы, когда никто не следил, и запускал анализ наших данных. Через несколько недель подпольной работы мы опубликовали статью с наиболее точными на тот момент данными о форме кривой спектра мощности.

Этот проект позволил мне понять, что достижения компьютерной техники способны вывести астрономию на новый уровень – подобно тому, как телескопы изменили ее лицо. Судите сами: ваш нынешний компьютер настолько мощен, что мог бы повторить наши с Тедом вычисления за несколько минут. Я решил, что если экспериментаторы вкладывают так много труда в сбор данных о Вселенной, люди вроде меня просто обязаны взять из этих данных все, что только возможно. Это стало лейтмотивом моей работы в следующее десятилетие.

Я был одержим задачей, как наилучшим образом определить спектр мощности. Существовали быстрые методы, которые давали погрешности и отличались другими недостатками. Затем мой друг Эндрю Гамильтон разработал оптимальный метод, но, к сожалению, его требования к компьютерному времени росли как шестая степень числа пикселов на карте неба, так что длительность определения спектра мощности по карте COBE превысила бы возраст Вселенной.

21 ноября 1996 года. В Принстонском институте перспективных исследований в штате Нью-Джерси тихо и темно. Я провожу еще одну ночь в кабинете. Меня волнует возможность замены метода шестого порядка Эндрю Гамильтона методом третьего порядка, позволяющим оптимально определить спектр мощности COBE менее чем за час, и я хочу закончить статью к завтрашней конференции. Профессиональные физики загружают свои только что написанные статьи на общедоступный сайт http://arXiv.org, чтобы коллеги могли прочесть их прежде, чем тексты надолго увязнут в процессе журнального рецензирования и публикации. Однако у меня была манера загружать статьи до завершения работы над ними – сразу после наступления суточного дедлайна для подачи таких препринтов. Таким образом, я оказывался первым в списке статей следующего дня. Недостаток в том, что если не успеть закончить статью за 24 часа, то я опозорюсь на весь мир, опубликовав сырой черновик, который станет вечным памятником моей глупости. На этот раз моя стратегия дала сбой, и ранние пташки в Европе наткнулись на недоделанный раздел обсуждения в моей статье, который я закончил лишь около четырех утра. На конференции мой друг Ллойд Нокс представил похожий метод, который он разработал совместно с Эндрю Яффе и Диком Бондом в Торонто, но еще не подготовил для публикации. Когда я рассказывал о своих результатах, Ллойд, ухмыльнувшись, сказал Дику: «Тегмарк – быстрые пальчики!» Наш метод оказался чрезвычайно полезным и с тех пор применяется практически во всех измерениях спектра мощности микроволнового фона. Мы с Ллойдом, похоже, шли по жизни параллельными курсами: нам одновременно приходили в голову одинаковые идеи (впрочем, он обогнал меня с выводом замечательной формулы для шума на картах микроволнового фона), в одно и то же время у нас родилось двое сыновей, и даже развелись мы синхронно.

Золото в холмах

По мере совершенствования экспериментов, компьютеров и методов результаты измерения кривой спектра мощности (рис. 4.2) становились все точнее. Как видно на рисунке, предсказываемая форма кривой отчасти напоминает холмы Калифорнии. Если обмерить много немецких догов, пуделей и чау-чау и нарисовать их распределение по размеру, получится кривая с тремя пиками. А если измерить множество пятен космического микроволнового фона (рис. 3.4) и нарисовать их распределение по размерам, окажется, что пятна определенного размера встречаются особенно часто. Наиболее заметный пик на рис. 4.2 соответствует пятнам с угловым размером около 1°. Почему? Эти пятна были порождены звуковыми волнами, распространявшимися по космический плазме почти со скоростью света, а поскольку плазма просуществовала 400 тыс. лет после Большого взрыва, эти пятна выросли в размерах примерно до 400 тыс. световых лет. Если посчитать, под каким углом на нашем небосводе 14 млрд лет спустя видно сгущение размером 400 тыс. световых лет, получится около 1°. Если, конечно, пространство не искривлено…

Существует не один вид однородного трехмерного пространства (гл. 2): кроме плоской разновидности, которую аксиоматизировал Евклид и мы изучали в школе, существуют искривленные пространства, где углы подчиняются иным правилам. В школе меня учили, что углы треугольника на листе бумаги дают в сумме 180°. Но если нарисовать треугольник на искривленной поверхности апельсина, то в сумме они дадут больше 180°, ну а если на седле, сумма окажется меньше 180° (рис. 2.7). Аналогично, если наше физическое пространство искривлено подобно сферической поверхности, то угол, охватываемый каждым пятном микроволнового фона, окажется больше, а значит, пики на кривой спектра мощности сместятся влево. Если же пространство имеет седловидную кривизну, пятна будут казаться меньше, и пики сместятся вправо.

Поделиться:
Популярные книги

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Егерь

Астахов Евгений Евгеньевич
1. Сопряжение
Фантастика:
боевая фантастика
попаданцы
рпг
7.00
рейтинг книги
Егерь

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3