Наши космические пути
Шрифт:
В отличие от внешней зоны радиация во внутренней зоне стабильна во времени. Защита от радиации в этой зоне требует применения значительного количества вещества. Продолжительные полеты во внутренней зоне без специальной защиты связаны со значительной радиационной опасностью.
Таким образом, нестабильность границ радиационных поясов и случайные увеличения активности космической радиации делают весьма актуальным контроль уровня космической радиации и детальное изучение нижних границ радиационных поясов.
Для решения указанных задач на борту космического корабля была установлена дозиметрическая аппаратура (радиометр).
В состав радиометра включены два газоразрядных и
Газоразрядные счетчики, а также сцинтилляционный счетчик с кристаллом йодистого натрия дают информацию о числе частиц, прошедших через них. В то же самое время сцинтилляционные счетчики позволяют судить о суммарной ионизации, вызываемой прошедшими частицами.
Полученная информация, как о числе прошедших частиц, так и о суммарной ионизации,, вызванной этими частицами в кристаллах, даст количественные сведения об уровне (дозе) космической радиации.
Исследования ультрафиолетового и рентгеновского излучения Солнца
Как известно, Солнце излучает энергию в очень широком интервале длин волн. Однако до земного наблюдателя доходит лишь небольшая область спектра этого излучения, пропускаемая земной атмосферой. С коротковолновой стороны спектра граница пропускания земной атмосферы лежит вблизи 2900 ангстрем (1 ангстрем равен 10– 8 сантиметров).
Все коротковолновое излучение ниже этой границы поглощается земной атмосферой и проникает лишь до высот около 70 километров над поверхностью Земли. Исследование коротковолнового излучения представляет значительный наушный и практический интерес. В этой области спектра сосредоточено основное излучение солнечной короны и хромосферы — очень мало изученных внешних оболочек Солнца. Это излучение в то же время вызывает некоторые процессы, происходящие в земной атмосфере, в частности образование ионосферы.
Наиболее интересное излучение хромосферы Солнца в коротковолновой области спектра сосредоточено в спектральных линиях водорода и геллия. Наиболее интенсивной из этих линий является линия водорода с длиной волны 1216 ангстрем, так называемая линия лайман-альфа. Основное излучение солнечной короны сосредоточено в области мягкого рентгеновского излучения — короче 200 ангстрем, вплоть до нескольких ангстрем. Это излучение состоит из непрерывного спектра, обусловленного торможением электронов в поле ионов, и из спектральных линий, принадлежащих высокоионизованным атомам железа, кислорода, азота и других элементов, входящих в состав короны.
Солнечная корона не является единым образованием. В ней можно различать области, не соответствующие спокойной короне (излучение этих областей сосредоточено в интервале 200-60 ангстрем и соответствует цветовой температуре 700 000 - 1 000 000 градусов), и области так называемых конденсаций (характеризуемые температурой 1,5-2 миллиона градусов и излучением в области 50-10 ангстрем и короче).
Излучение хромосферы и короны не является постоянным во времени — оно подвержено более или менее глубоким изменениям, как очень медленным, связанным с общим циклом солнечной активности, так и быстрым, носящим характер возмущений. Особый интерес
По-видимому, во время вспышек граница излучения короны доходит до 1-2 ангстрем и цветовая температура излучения соответствует 3 и более миллионам градусов.
Абсолютные значения энергии, излучаемой хромосферой и короной, сравнительно невелики по сравнению с энергией, излучаемой фотосферой Солнца. Так, поток энергии от линии водорода лайман-альфа на границе земной атмосферы составляет по порядку величины 1-10 эрг на квадратный сантиметр в секунду, поток от короны в области 100-60 ангстрем составляет 0,1-1 эрг на квадратный сантиметр в секунду, а поток излучения с длиной волны короче 10 ангстрем — порядка 10– 4—10– 2 эрга на квадратный сантиметр в секунду. Существенной особенностью коротковолнового излучения является, однако, его активность. Оно ионизует газы, составляющие земную атмосферу, и способно проникать сравнительно глубоко в толщу атмосферы. В частности, нижний слой ионосферы, так называемый слой Д, лежащий на высоте порядка 70 километров, обусловлен ионизующим действием линии лайманальфа. Быстрые изменения высоты этого слоя, приводящие к нарушению радиосвязи, по-видимому, связаны с появлением рентгеновского излучения короче 5-6 ангстрем во время вспышек.
Из сказанного явствует важность систематического исследования коротковолнового излучения Солнца. При этом важно не только получение средних данных. Особый интерес представляет изучение его динамики — изменений во времени, характеризующих нестационарные процессы на Солнце.
Основные приведенные выше данные о коротковолновом излучении Солнца были получены с помощью аппаратуры, установленной на геофизических ракетах в США и СССР.
Естественно, что возможность использования для этих исследований спутников позволяет значительно расширить рамки исследований и получить особенно интересующие науку данные о временных изменениях спектрального состава и интенсивности коротковолнового излучения.
На борту космического корабля были установлены два типа аппаратуры для изучения коротковолнового излучения Солнца.
В аппаратуре первого типа приемником коротковолновой радиации являлся электронный умножитель открытого типа с электродами из активированной бериллиевой бронзы. Перед входом электронного умножителя был установлен диск с набором различных фильтров для выделения соответствующих областей коротковолнового спектра излучения Солнца. С помощью механизма релеискателя через каждую секунду диск делал поворот на небольшой угол, устанавливая перед электронным умножителем новый фильтр. В аппаратуре применялись следующие фильтры:
Медная фольга толщиной 0,15 миллиметра — для выделения области спектра от 1,4 до 3 ангстрем;
Бериллиевая фольга толщиной 0,06 миллиметра — для выделения области спектра короче 12 ангстрем;
Алюминиевая фольга толщиной 0,005 миллиметра — для выделения области спектра от 8 до 20 ангстрем;
Пленка из полистирола с нанесенным на нее тонким слоем углерода — для выделения области спектра от 44 до 100 ангстрем;
Пластинка из фтористого лития толщиной 0,5 миллиметра — для выделения линии водорода лайман-альфа с длиной волны 1216 ангстрем;