Наши космические пути
Шрифт:
Сейчас уже настало время, когда мы можем изучать космические лучи на орбите Венеры. Более того, вероятно, недалек тот день, когда на космических ракетах мы будем изучать космическое излучение в районе орбит Марса, а может быть, и Юпитера.
Что же касается звезд... Даже ближайшая звезда находится от нас на расстоянии четырех световых лет. Это — 40 тысяч миллиардов километров. До Солнца же — «только» 150 миллионов километров. Космическая ракета, летящая со скоростью 10 километров в секунду, долетит до Солнца за полгода, а до ближайшей звезды — за 100 тысяч лет. Увеличение скорости ракеты в сто раз сократит это время до тысячи лет, но одновременно потребует увеличения веса топлива для разгона
Но пусть те, кто мечтает завтра же полететь в глубь космоса, не огорчаются. Прежде чем проложить путь к звездам, человечеству предстоит разрешить массу интереснейших, увлекательных и нелегких научных проблем — в том числе проблему детального изучения и «освоения» солнечной системы.
ОРИЕНТАЦИЯ В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ
В. ПЕТРОВ, кандидат технических наук
Много научных задач впервые решалось с помощью советских искусственных спутников Земли. Среди них важное место занимает исследование условий полета в космосе, в частности, ориентации спутника в пространстве. И это понятно. Ведь спутник, как только он отделится от ракеты-носителя, сразу же превращается в свободно летящее тело, которое в полете может как угодно вращаться относительно своего центра инерции.
Чтобы этого не произошло, оси искусственного спутника Земли (ИСЗ) следует ориентировать в каком-то определенном направлении. Но решение подобной задачи оказывается чрезвычайно сложным. Тем не менее советские ученые решили успешно и эту проблему. На третьей советской космической ракете впервые была осуществлена система ориентации, позволившая ориентировать ракету и ее фотоаппаратуру во время фотографирования невидимой стороны Луны. Еще более совершенная система ориентации была применена на втором, четвертом и пятом космических кораблях, впервые в истории человечества успешно вернувшихся в намеченное географическое место на территории нашей Родины.
Феноменальный запуск советской автоматической станции к Венере, произведенный 12 февраля 1961 года с борта тяжелого искусственного спутника Земли, и успешное возвращение на Землю советских космических кораблей свидетельствуют о том, что советские ракетостроители блестяще решили труднейшие проблемы создания самых совершенных в мире систем ориентации космических летательных аппаратов.
Но прежде чем рассказать о том, как можно ориентировать спутник или ракету в свободном полете и для чего вообще нужна ориентация, мы кратко познакомим читателя с проблемой полета свободного тела.
Свободное тело в полете
Свободным телом можно назвать такой предмет, который, образно выражаясь, может как угодно кувыркаться и перемещаться в пространстве. Если же подойти к определению более точно, то это предмет любой формы, который под влиянием начальных или внешних возмущений может свободно перемещаться в пространстве и вращаться вокруг своих осей.
Как же предотвратить эти вращения, как ориентировать свободное тело в пространстве? Для этого надо прежде всего выбрать соответствующие неподвижные ориентиры. Опираясь на них можно отсчитывать, или, как говорят, определять, величину углового отклонения оси свободного тела относительно выбранного опорного тела. Подобными ориентирами могут быть, например, небесные светила: Солнце, Луна, яркие звезды, а также Земля, земное магнитное поле и т. п.
Угловая ориентация свободного тела в пространстве
Так, например, главйой осью первой автоматической межпланетной станции являлась ось, проходящая через ее центр инерции и чувствительную фотоследящую головку, располагавшуюся в центре верхнего днища автоматической космической станции. Оптическая ось объективов фотоаппаратов, установленных на космической станции, была параллельна главной оси станции.
Читателю нетрудно представить себе свободно летящее тело. Им может быть снаряд после выхода его из канала ствола орудия; самолет или ракета, летящие с выключенным двигатёлем; искусственный спутник Земли после выхода его на орбиту или высотный контейнер (после отделения его от ракеты-носителя), запускаемый в верхние слои атмосферы для геофизических наблюдений.
Как же происходит полет свободного тела? Если у тела нет начальной скорости и на него действует переменная сила сопротивления воздуха (или воды), то оно совершает свободное падение, направленное к центру Земли. Иначе говоря, такое падение обусловлено земным притяжением.
Если же свободное тело падает с небольшой по сравнению с радиусом Земли высоты, то движение его под действием постоянной силы тяжести и переменной силы сопротивления воздуха будет происходить по вертикальной прямой, соединяющей начальное положение тела с центром Земли.
В таких условиях как раз и находится сферический контейнер с приборами, забрасываемый геофизической ракетой в верхние слои атмосферы. В начале своего падения, в безвоздушном пространстве и затем при входе в плотные слои атмосферы он испытывает различное ускорение.
Полет советской межпланетной автоматической станции (MAC) вокруг Земли также был свободным. Он определялся в конечном счете параметрами движения в конце участка разгона последней ступени ракеты-носителя. Поэтому точность удержания во время полета станции на заранее рассчитанной траектории была возможна, как мы уже знаем, лишь при совершенной системе управления ракетойносителем.
Схема движения MAC под влиянием одновременно действующих на нее сил тяготения Земли, Луны и Солнца была весьма сложна. Таким образом свободное тело может испытывать в полете различные возмущения или толчки, которые будут влиять на условия его передвижения. К числу их можно отнести начальные возмущения (угловые скорости), получаемые при отделении, например, сферического контейнера или искусственного спутника Земли от ракеты-носителя; внешние импульсные возмущения: удары метеоритов, вращающие моменты от трения корпуса спутника о более плотные слои атмосферы и другие. Только имея точные данные о таких возмущениях, то есть зная, с какой скоростью будет вращаться ИСЗ или другой космический летательный аппарат относительно своего центра массы в пространстве под влиянием указанных причин, можно создавать надежную и экономичную систему его ориентации.
На третьем советском спутнике, был установлен магнитометр, измерительный датчик которого автоматически ориентировался, используя для этого влияние земного магнитного поля. Два других датчика позволяли определить положение корпуса спутника относительно земного поля и скорость вращения ИСЗ вокруг собственных осей. Эти весьма важные данные позволили построить затем ориентируемые спутники, ориентируемые космические корабли и ориентируемые межпланетные станции.
Для чего нужна ориентация?