Наши космические пути
Шрифт:
Большинство солнечных корпускул является заряженными частицами. Такие корпускулы чаще всего проникают в атмосферу вблизи геомагнитных полюсов
Земли в полярных областях. Благодаря искривлению траекторий движения в магнитных полях заряженные корпускулы проникают и на ночную сторону Земли, вблизи полярных зон. Корпускулярные вторжения имеют место и в средних широтах, но здесь они менее интенсивны. Нейтральные корпускулы могут беспрепятственно проникать в любые места земного шара.
Сведения о корпускулярном излучении Солнца слишком бедны, а его природа и свойства мало изучены. До самого недавнего времени основная информация
Искусственные спутники Земли — эффективное средство исследования корпускулярного излучения Солнца. Настоящее время особенно благоприятно для исследования корпускулярного излучения, усилившегося из-за повышенной солнечной активности.
На спутнике установлено два индикатора корпускул. Этими индикаторами являются флуоресцирующие экраны, покрытые тонкой алюминиевой фольгой различной толщины. Таким образом достигается грубая сортировка корпускул по их проникающей способности.
Перед флуоресцирующими экранами располагаются диафрагмы, ограничивающие телесный угол захвата корпускул. Под воздействием корпускул флуоресцирующие экраны светятся, аналогично тому, как это происходит в кинескопе телевизора при облучении его экрана электронным лучом. Излучение экрана воспринимается фотоэлектронным умножителем. Его сигнал «запоминается» специальным устройством и затем передается на Землю радиотелеметрической системой.
С помощью указанной аппаратуры можно будет получить ценный материал о географическом, высотном и суточном распределении корпускулярных потоков. Для исследования направления прихода корпускул используется вращение спутника. Земное магнитное поле обладает способностью отражать заряженные корпускулы и заставлять их следовать по спиралевидным путям вдоль магнитных силовых линий. Нейтральные корпускулы могут перемещаться по прямолинейным траекториям. Такие наблюдения дадут дополнительный материал для суждений о природе корпускул.
Наряду с регистрацией корпускулярного излучения Солнца аппаратура позволяет получить дополнительно материал о его рентгеновском излучении, которое будет также регистрироваться индикаторами корпускул. Это излучение можно будет отличить от корпускулярного по направлению его прихода и по отсутствию отражений от земной атмосферы. Кроме того, оно может быть отмечено по времени появления, поскольку корпускулярное излучение распространяется медленнее электромагнитного.
Измерение давления и плотности атмосферы
К числу важнейших геофизических исследований верхней атмосферы относится изучение изменения давления и плотности с высотой. Зная эти два параметра, можно определить и температуру атмосферы на больших высотах.
До недавнего времени это изучение было ограничено сравнительно небольшими высотами, и только высотные ракеты позволили производить измерения давления и плотности в верхних слоях атмосферы. На высоте 100 километров давление и плотность примерно в десять миллионов раз меньше, чем на Земле. Выше 100 километров имеются единичные ракетные измерения, которые плохо согласуются с косвенными данными. Существенным недостатком ракетных измерений является их кратковременность и то, что они производятся только над отдельными точками земной поверхности.
Для геофизики чрезвычайно важно иметь данные о плотности и давлении верхних слоев атмосферы по всем широтам и долготам, проводя измерения длительное время.
Использование
При достаточной точности эксперимента можно будет также оценить суточные и широтные вариации плотности и давления на высотах, на которых пролетает спутник.
Манометры, установленные на наружной стороне спутника, соединяются с измерительной аппаратурой, размещенной внутри его. Измерение давления на спутнике в пределах 10– 5—10– 7миллиметра ртутного столба производится магнитным манометром, а в интервале 10– 6—10– 9миллиметра ртутного столба — ионизационными манометрами.
Исследование микрометеоров
Известно, что в пространстве между планетами движутся мелкие твердые частицы — микрометеоры. Вторгаясь в земную атмосферу, они сгорают в ней. При этом заметное свечение, которое может быть обнаружено глазом или в телескоп, вызывают лишь сравнительно крупные частицы. Самые мелкие и, как можно предполагать, самые многочисленные частицы, поперечником в несколько микрон, создают столь ничтожное свечение, что оно не может быть обнаружено не только с помощью оптических средств, но и никакими другими средствами наземных наблюдений.
Радиолокационными наблюдениями было установлено, что микрометеоры, вторгающиеся в земную атмосферу с весьма большими скоростями, достигающими 70 километров в секунду, в процессе их движения в атмосфере производят ионизацию молекул воздуха. За летящей частицей образуется след заряженных частиц — электронов и ионов, который обнаруживается радиолокатором. Тем не менее и этот метод не позволяет изучать самые мелкие из микрометеоров. В настоящее время эти частицы можно изучить лишь с помощью аппаратуры, поднимаемой на ракетах и, в особенности, на искусственных спутниках Земли.
Изучение межпланетного вещества имеет существенное значение для астрономии, геофизики и астронавтики, а также для решения проблем эволюции и происхождения планетных систем, так как оно позволяет выяснить ряд существенных вопросов для современных космогонических теорий.
Очень важно также точно знать общее количество метеорного вещества, выпадающего на поверхность Земли за определенный промежуток времени. Необходимо учесть воздействие ударов метеорных тел на внешние оболочки ракет и искусственных спутников, а также на приборы, установленные на них, например, на поверхности оптических приборов, которые из прозрачных могут в результате столкновений с микрометеорами стать матовыми, на активные поверхности солнечных батарей и т. п.
Следует учитывать и опасность столкновения спутников, и особенно межпланетных ракет; с более крупными частицами. Хотя вероятность такого столкновения невелика, но она существует, и важно уметь ее правильно оценить.
Для регистрации соударений микрометеоров с внешней оболочкой межпланетной ракеты или спутника можно использовать ряд способов. Одним из очень простых и в то же время чувствительных методов является применение пьезоэлементов — датчиков, превращающих механическую энергию ударяющей частицы в электрическую энергию.