Научный атеизм
Шрифт:
Таким образом, из представления о причинно-следственных связях логически следует принцип достаточного основания Аристотеля.
Английский ученый Уильям Оккам в XIV веке сформулировал принцип Аристотеля следующим образом: "Для объяснения причин явлений не следует привлекать новые понятия без крайней необходимости". Эта формулировка принципа Аристотеля называется как бритва Оккама.
Если явление имеет достаточные основания, то дополнительные объяснения явления – ложные, их изобретать не нужно. Лишние, не нужные, понятия как бы "срезаются бритвой" Оккама для упрощения картины мира. Все следует упрощать по мере возможности, не нужно
Великий английский ученый Исаак Ньютон сформулировал этот принцип так: «Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений… Природа проста и не роскошествует излишними причинами вещей». Другой альтернативной формулировкой принципа достаточного основания Аристотеля – бритвы Оккама – является ставшее крылатым выражение
А.П.Чехова "краткость – сестра таланта". В англоязычной литературе этот принцип также известен как принцип KISS – Keep It Short and Simple – "поддерживай краткость и простоту".
Бритва Оккама используется в науке следующим образом: если какой-то факт может быть объяснён двумя способами, например, первым – через привлечение понятий А и В, а вторым – через понятия А, В и С, и при этом оба способа дают одинаковый результат, то понятие C лишнее, и верным является первый способ (который может обойтись без привлечения лишних понятий).
Когда великий французский математик и физик П.С.Лаплас создал теорию возникновения Солнечной системы, Наполеон спросил его: "Почему слово «бог» не встречается в Вашем сочинении?". На что Лаплас ответил: «Потому, что я не нуждался в этой гипотезе».
Современная наука не нуждается в гипотезе о боге для объяснения любых явлений природы. Также науке не нужны гипотезы о каких-либо иных сверхъестественных силах. Четырех фундаментальных сил природы – гравитации, электромагнетизма, сильного и слабого взаимодействий – достаточно для описания всего мира. Даже от понятия "душа" мировая наука отказалась после того, как в позапрошлом веке – в 1863 году великий русский ученый, основоположник физиологии, И.М.Сеченов опубликовал свою знаменитую книгу "Рефлексы головного мозга", где объяснил все душевные явления с позиций материализма. Его имя сегодня носит Московская Медицинская Академия имени И.М.Сеченова.
А если материальных причин достаточно для объяснения всех явлений мира, то все сверхъестественное не существует согласно принципу достаточного основания Аристотеля.
Верующие верят в то, будто материальный мир сотворён богом. Но тогда возникает закономерный вопрос: "А кто сотворил бога? Откуда он взялся?". Религия отвечает на это: "А бог вечный и несотворённый". Но в таком случае и атеисты тоже могут заявить о том, что материя вечна и несотворённа и она была всегда. Вроде бы на первый взгляд эти два утверждения равноценны.
Однако те факты, что:
• материя есть везде и все её видят, даже верующие, а бога не видит никто, даже верующие,
• есть законы сохранения массы и энергии, но нет закона сохранения "души" (люди рождаются и умирают) позволяют назвать вечность материи следствием закона
сохранения энергии, а вечность бога – ложной слепой верой.
Учитывая это, бритва Оккама позволяет только на основе логики отказаться от религиозных догматов о боге и сотворении.
Таким образом, бритва Оккама – принцип достаточного основания Аристотеля – уже позволяет сделать научный вывод об атеизме. Если материи достаточно для объяснения всех явлений природы, то никакого бога нет.
1.5. Мерило случайности совпадения, математико-статистическая обработка экспериментальных данных. Экспериментальное доказательство атеизма
Здесь нет смысла повторять теорию вероятностей и математическую статистику и лучше порекомендовать
Люди часто делают ошибочные выводы, проведя всего лишь один опыт , совпадение в котором между предположением и экспериментом может оказаться случайным. Например, полно таких случаев, когда кто-то о чём-то помолился и вдруг это получил – не нужно на одном этом случайном совпадении делать религиозные выводы, ибо это некорректно с точки зрения теории вероятностей.
Важное качество верной теории – повторяемость, воспроизводимость результата.
Для того, чтобы исключить влияние фактора случайности, случайное совпадение, необходимо провести хотя бы несколько сотен аналогичных экспериментов. Только так можно обнаружить закономерность и исключить случайность. Именно поэтому никакая научная теория не может основываться на одном единственном опыте – нужны сотни аналогичных опытов, чтобы накопить статистически значимое количество данных. Например, можно провести 10 или 100 опытов для проверки высказывания "железо растворяется в соляной кислоте" и в 100 % случаев мы подтвердим его.
В любой области науки – в физике, химии, экономике и пр. – везде используется статистическая погрешность. Если мы хотим проверить закон Ома, то можно провести несколько сотен измерений разной силы тока и разного напряжения при разных сопротивлениях, чтобы убедиться в истинности закона Ома в проверенном диапазоне величин напряжения, сопротивления и силы тока. Или, например, при проведении маркетинговых исследований с опросом потребителей ни в коем случае нельзя строить маркетинговую стратегию компании на мнении одного или даже десяти потребителей. Потому что вероятность статистической ошибки будет очень высока. При проведении маркетинговых исследований лучше опросить, скажем, 1000 или более потребителей. После такого опроса отдел маркетинга компании получит более-менее объективные данные о потребности потребителей в данном товаре на данном сегменте рынка. И чем больше выборка – тем менее вероятна статистическая ошибка. Поэтому крупные компании тратят очень большие деньги на точные маркетинговые исследования с детальным опросом очень большого количества потребителей, чтобы тем самым сократить риски бизнеса и чтобы точно знать, что данный товар по данной цене купит такое-то количество потребителей на данном сегменте рынка, и следовательно, можно получить такую-то научно прогнозируемую прибыль. Следуя научному подходу – пониманию теории вероятностей и математической статистики – умный бизнес может прогнозировать свою прибыль, заранее расчитывать расходы на рекламу, которые точно окупятся и значительно снизить (практически ликвидировать) рыночные риски бизнеса.
Но статистическая ошибка будет всегда. Поэтому в точных науках результат даётся с погрешностью, например: х = (34 ± 2), CL = 95 %. Это означает, что на уровне достоверности 95 % величина х лежит в интервале от 32 до 36. И еще есть вероятность 5 % того, что величина х находится вне этого интервала. CL – confidence level – уровень достоверности (англ.).
Все случайные величины подчиняются распределению Гаусса в пределе при количестве элементов выборки, стремящемуся к бесконечности. Согласно распределению Гаусса, наиболее вероятная величина – среднее арифметическое бесконечно большой выборки. Однако реальные выборки отнюдь не бесконечно большие, а 100 или 1000 или любое иное число элементов. Причем, среднее арифметическое реальной выборки далеко не всегда равно среднему арифметическому бесконечно большой выборки.